{"title":"利用扫描阻抗模型提高非平衡馈电 TCDA 性能","authors":"Eric D. Robinson;Carey M. Rappaport","doi":"10.1109/OJAP.2024.3413012","DOIUrl":null,"url":null,"abstract":"Unbalanced-fed Tightly-Coupled Dipole Arrays (TCDAs) allow for the realization of ultrawideband, wide-scanning phased arrays without the need for baluns, which may increase size, weight, and cost. However, unbalanced-fed TCDAs often have additional radiating modes and common-mode resonances which may degrade performance. In this paper, a scan impedance model is presented which describes performance in terms of a combination of even and odd monopole and dipole radiating modes. An intermodal coupling term is included to account for performance when scanning in the E-plane. Each mode is calculated individually in a full-wave solver and the model is then validated by comparing the proposed combination to a full simulation of the unbalanced-fed TCDA. A coaxial extension technique is then introduced to increase the impedance of the monopole-like radiating even mode, allowing the unbalanced-fed array to match the performance of the balanced-fed version without shorting posts or significant redesign of the elements or lattice.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10555425","citationCount":"0","resultStr":"{\"title\":\"Unbalanced-Fed TCDA Performance Improvement Using a Scan Impedance Model\",\"authors\":\"Eric D. Robinson;Carey M. Rappaport\",\"doi\":\"10.1109/OJAP.2024.3413012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unbalanced-fed Tightly-Coupled Dipole Arrays (TCDAs) allow for the realization of ultrawideband, wide-scanning phased arrays without the need for baluns, which may increase size, weight, and cost. However, unbalanced-fed TCDAs often have additional radiating modes and common-mode resonances which may degrade performance. In this paper, a scan impedance model is presented which describes performance in terms of a combination of even and odd monopole and dipole radiating modes. An intermodal coupling term is included to account for performance when scanning in the E-plane. Each mode is calculated individually in a full-wave solver and the model is then validated by comparing the proposed combination to a full simulation of the unbalanced-fed TCDA. A coaxial extension technique is then introduced to increase the impedance of the monopole-like radiating even mode, allowing the unbalanced-fed array to match the performance of the balanced-fed version without shorting posts or significant redesign of the elements or lattice.\",\"PeriodicalId\":34267,\"journal\":{\"name\":\"IEEE Open Journal of Antennas and Propagation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10555425\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10555425/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10555425/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
非平衡馈电紧耦合偶极子阵列(TCDA)可实现超宽带、宽扫描相控阵,而无需使用平衡器,平衡器可能会增加尺寸、重量和成本。然而,非平衡馈电 TCDA 通常具有额外的辐射模式和共模谐振,可能会降低性能。本文介绍了一种扫描阻抗模型,该模型通过偶数和奇数单极子和偶极子辐射模式的组合来描述性能。其中还包括一个模间耦合项,以说明在 E 平面扫描时的性能。在全波求解器中对每种模式进行单独计算,然后通过比较建议的组合与非平衡馈电 TCDA 的完整模拟,对模型进行验证。然后引入同轴延伸技术,以增加单极辐射偶数模式的阻抗,从而使非平衡馈电阵列的性能与平衡馈电版本相匹配,而无需短接柱或对元件或晶格进行重大的重新设计。
Unbalanced-Fed TCDA Performance Improvement Using a Scan Impedance Model
Unbalanced-fed Tightly-Coupled Dipole Arrays (TCDAs) allow for the realization of ultrawideband, wide-scanning phased arrays without the need for baluns, which may increase size, weight, and cost. However, unbalanced-fed TCDAs often have additional radiating modes and common-mode resonances which may degrade performance. In this paper, a scan impedance model is presented which describes performance in terms of a combination of even and odd monopole and dipole radiating modes. An intermodal coupling term is included to account for performance when scanning in the E-plane. Each mode is calculated individually in a full-wave solver and the model is then validated by comparing the proposed combination to a full simulation of the unbalanced-fed TCDA. A coaxial extension technique is then introduced to increase the impedance of the monopole-like radiating even mode, allowing the unbalanced-fed array to match the performance of the balanced-fed version without shorting posts or significant redesign of the elements or lattice.