时分数克莱因-戈登方程初边界值问题的数值模拟

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zaid Odibat
{"title":"时分数克莱因-戈登方程初边界值问题的数值模拟","authors":"Zaid Odibat","doi":"10.1016/j.apnum.2024.07.015","DOIUrl":null,"url":null,"abstract":"<div><p>This paper mainly presents numerical solutions to an initial-boundary value problem of the time-fractional Klein-Gordon equations. We developed a numerical scheme with the help of the finite difference methods and the predictor-corrector methods to find numerical solutions of the considered problems. The proposed scheme is based on discretizing the considered problems with respect to spatial and temporal domains. Numerical results are derived for some illustrative problems, and the outputs are compared with the exact solution in the integer order case. The solution behavior and 3D graphics of the discussed problems are demonstrated using the proposed scheme. Finally, the proposed scheme, which does not require solving large systems of linear equations, can be extended and modified to handle other classes of time-fractional PDEs.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation for an initial-boundary value problem of time-fractional Klein-Gordon equations\",\"authors\":\"Zaid Odibat\",\"doi\":\"10.1016/j.apnum.2024.07.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper mainly presents numerical solutions to an initial-boundary value problem of the time-fractional Klein-Gordon equations. We developed a numerical scheme with the help of the finite difference methods and the predictor-corrector methods to find numerical solutions of the considered problems. The proposed scheme is based on discretizing the considered problems with respect to spatial and temporal domains. Numerical results are derived for some illustrative problems, and the outputs are compared with the exact solution in the integer order case. The solution behavior and 3D graphics of the discussed problems are demonstrated using the proposed scheme. Finally, the proposed scheme, which does not require solving large systems of linear equations, can be extended and modified to handle other classes of time-fractional PDEs.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要介绍时分数克莱因-戈登方程初边界值问题的数值解。我们借助有限差分法和预测校正法开发了一种数值方案,以找到所考虑问题的数值解。所提出的方案基于对所考虑问题的空间域和时间域离散化。针对一些示例问题得出了数值结果,并将输出结果与整数阶情况下的精确解进行了比较。使用建议方案演示了所讨论问题的求解行为和 3D 图形。最后,提出的方案无需求解大型线性方程组,可以扩展和修改,以处理其他类别的时间分数 PDEs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation for an initial-boundary value problem of time-fractional Klein-Gordon equations

This paper mainly presents numerical solutions to an initial-boundary value problem of the time-fractional Klein-Gordon equations. We developed a numerical scheme with the help of the finite difference methods and the predictor-corrector methods to find numerical solutions of the considered problems. The proposed scheme is based on discretizing the considered problems with respect to spatial and temporal domains. Numerical results are derived for some illustrative problems, and the outputs are compared with the exact solution in the integer order case. The solution behavior and 3D graphics of the discussed problems are demonstrated using the proposed scheme. Finally, the proposed scheme, which does not require solving large systems of linear equations, can be extended and modified to handle other classes of time-fractional PDEs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信