{"title":"利用面向多样性改进的微分演化识别光伏模型参数","authors":"Chongle Ren, Zhenghao Song, Zhenyu Meng","doi":"10.1016/j.swevo.2024.101689","DOIUrl":null,"url":null,"abstract":"<div><p>Fast and accurate parameter identification of the photovoltaic (PV) model is crucial for calculating, controlling, and managing PV generation systems. Numerous meta-heuristic algorithms have been applied to identify unknown parameters due to the multimodal and nonlinear characteristics of the parameter identification problems. Although many of them can obtain satisfactory results, problems such as premature convergence and population stagnation still exist, influencing the optimization performance. A novel variant of Differential Evolution, namely, Diversity Improvement-Oriented Differential Evolution (DIODE), is proposed to mitigate these deficiencies and obtain reliable parameters for PV models. In DIODE, an adaptive perturbation strategy is employed to perturb current individuals to mitigate premature convergence by enhancing population diversity. Secondly, a diversity improvement mechanism is proposed, where information on the covariance matrix and fitness improvement of individuals is used as a diversity indicator to detect stagnant individuals, which are then updated by the intervention strategy. Lastly, a novel parameter adaptation strategy is employed to maintain a sound balance between exploration and exploitation. The proposed DIODE algorithm is applied to parameter identification problems of six PV models, including single, double, and triple diode and three PV module models. In addition, a large test bed containing 72 benchmark functions from CEC2014, CEC2017, and CEC2022 test suites is employed to verify DIODE’s overall performance in terms of optimization accuracy. Experiment results demonstrate that DIODE can secure accurate parameters of PV models and achieve highly competitive performance on benchmark functions.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"90 ","pages":"Article 101689"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photovoltaic model parameters identification using diversity improvement-oriented differential evolution\",\"authors\":\"Chongle Ren, Zhenghao Song, Zhenyu Meng\",\"doi\":\"10.1016/j.swevo.2024.101689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fast and accurate parameter identification of the photovoltaic (PV) model is crucial for calculating, controlling, and managing PV generation systems. Numerous meta-heuristic algorithms have been applied to identify unknown parameters due to the multimodal and nonlinear characteristics of the parameter identification problems. Although many of them can obtain satisfactory results, problems such as premature convergence and population stagnation still exist, influencing the optimization performance. A novel variant of Differential Evolution, namely, Diversity Improvement-Oriented Differential Evolution (DIODE), is proposed to mitigate these deficiencies and obtain reliable parameters for PV models. In DIODE, an adaptive perturbation strategy is employed to perturb current individuals to mitigate premature convergence by enhancing population diversity. Secondly, a diversity improvement mechanism is proposed, where information on the covariance matrix and fitness improvement of individuals is used as a diversity indicator to detect stagnant individuals, which are then updated by the intervention strategy. Lastly, a novel parameter adaptation strategy is employed to maintain a sound balance between exploration and exploitation. The proposed DIODE algorithm is applied to parameter identification problems of six PV models, including single, double, and triple diode and three PV module models. In addition, a large test bed containing 72 benchmark functions from CEC2014, CEC2017, and CEC2022 test suites is employed to verify DIODE’s overall performance in terms of optimization accuracy. Experiment results demonstrate that DIODE can secure accurate parameters of PV models and achieve highly competitive performance on benchmark functions.</p></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"90 \",\"pages\":\"Article 101689\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221065022400227X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221065022400227X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Photovoltaic model parameters identification using diversity improvement-oriented differential evolution
Fast and accurate parameter identification of the photovoltaic (PV) model is crucial for calculating, controlling, and managing PV generation systems. Numerous meta-heuristic algorithms have been applied to identify unknown parameters due to the multimodal and nonlinear characteristics of the parameter identification problems. Although many of them can obtain satisfactory results, problems such as premature convergence and population stagnation still exist, influencing the optimization performance. A novel variant of Differential Evolution, namely, Diversity Improvement-Oriented Differential Evolution (DIODE), is proposed to mitigate these deficiencies and obtain reliable parameters for PV models. In DIODE, an adaptive perturbation strategy is employed to perturb current individuals to mitigate premature convergence by enhancing population diversity. Secondly, a diversity improvement mechanism is proposed, where information on the covariance matrix and fitness improvement of individuals is used as a diversity indicator to detect stagnant individuals, which are then updated by the intervention strategy. Lastly, a novel parameter adaptation strategy is employed to maintain a sound balance between exploration and exploitation. The proposed DIODE algorithm is applied to parameter identification problems of six PV models, including single, double, and triple diode and three PV module models. In addition, a large test bed containing 72 benchmark functions from CEC2014, CEC2017, and CEC2022 test suites is employed to verify DIODE’s overall performance in terms of optimization accuracy. Experiment results demonstrate that DIODE can secure accurate parameters of PV models and achieve highly competitive performance on benchmark functions.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.