{"title":"1 型糖尿病自反应 T 细胞的遗传学和表观遗传学","authors":"Tae Gun Kang, Benjamin Youngblood","doi":"10.1101/cshperspect.a041586","DOIUrl":null,"url":null,"abstract":"Type 1 diabetes (T1D) serves as an exemplar of chronic autoimmune disease characterized by insulin deficiency due to pancreatic β-cell destruction, leading to hyperglycemia and progressive organ failure. Until recently, therapeutic efforts to mitigate the root cause of disease have been limited by the challenges in studying mechanisms involved in immune tolerance in humans. The current clinical advances, and existing challenges, highlight a need to incorporate new insights into mechanisms into correlative studies that assess immune tolerance in the setting of delayed β-cell destruction. Among several factors known to promote T1D, autoreactive T cells play a critical role in initiating and sustaining disease through their direct recognition and destruction of β cells. Emerging research defining the genetic and epigenetic etiology of long-lived β-cell-specific T cells is providing new insight into mechanisms that promote lifelong disease and future opportunities for targeted therapeutic intervention. This article will provide an overview of recent progress toward understanding the development of autoreactive T cells and epigenetic mechanisms stabilizing their developmental state during T1D pathogenesis.","PeriodicalId":10452,"journal":{"name":"Cold Spring Harbor perspectives in medicine","volume":"78 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetics and Epigenetics of Type 1 Diabetes Self-Reactive T Cells\",\"authors\":\"Tae Gun Kang, Benjamin Youngblood\",\"doi\":\"10.1101/cshperspect.a041586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type 1 diabetes (T1D) serves as an exemplar of chronic autoimmune disease characterized by insulin deficiency due to pancreatic β-cell destruction, leading to hyperglycemia and progressive organ failure. Until recently, therapeutic efforts to mitigate the root cause of disease have been limited by the challenges in studying mechanisms involved in immune tolerance in humans. The current clinical advances, and existing challenges, highlight a need to incorporate new insights into mechanisms into correlative studies that assess immune tolerance in the setting of delayed β-cell destruction. Among several factors known to promote T1D, autoreactive T cells play a critical role in initiating and sustaining disease through their direct recognition and destruction of β cells. Emerging research defining the genetic and epigenetic etiology of long-lived β-cell-specific T cells is providing new insight into mechanisms that promote lifelong disease and future opportunities for targeted therapeutic intervention. This article will provide an overview of recent progress toward understanding the development of autoreactive T cells and epigenetic mechanisms stabilizing their developmental state during T1D pathogenesis.\",\"PeriodicalId\":10452,\"journal\":{\"name\":\"Cold Spring Harbor perspectives in medicine\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor perspectives in medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1101/cshperspect.a041586\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041586","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
1 型糖尿病(T1D)是慢性自身免疫性疾病的典范,其特点是胰岛β细胞破坏导致胰岛素缺乏,从而引发高血糖和渐进性器官衰竭。直到最近,由于在研究人体免疫耐受机制方面存在挑战,缓解疾病根源的治疗工作一直受到限制。目前的临床进展和现有的挑战突出表明,有必要将对机制的新认识纳入相关研究,以评估延迟β细胞破坏情况下的免疫耐受性。在已知的几种促进 T1D 的因素中,自反应 T 细胞通过直接识别和破坏 β 细胞,在引发和维持疾病方面起着至关重要的作用。界定长寿命 β 细胞特异性 T 细胞的遗传和表观遗传学病因学的新兴研究为了解促进终生疾病的机制和未来靶向治疗干预的机会提供了新的视角。本文将概述最近在了解自反应性 T 细胞的发育以及在 T1D 发病过程中稳定其发育状态的表观遗传学机制方面取得的进展。
Genetics and Epigenetics of Type 1 Diabetes Self-Reactive T Cells
Type 1 diabetes (T1D) serves as an exemplar of chronic autoimmune disease characterized by insulin deficiency due to pancreatic β-cell destruction, leading to hyperglycemia and progressive organ failure. Until recently, therapeutic efforts to mitigate the root cause of disease have been limited by the challenges in studying mechanisms involved in immune tolerance in humans. The current clinical advances, and existing challenges, highlight a need to incorporate new insights into mechanisms into correlative studies that assess immune tolerance in the setting of delayed β-cell destruction. Among several factors known to promote T1D, autoreactive T cells play a critical role in initiating and sustaining disease through their direct recognition and destruction of β cells. Emerging research defining the genetic and epigenetic etiology of long-lived β-cell-specific T cells is providing new insight into mechanisms that promote lifelong disease and future opportunities for targeted therapeutic intervention. This article will provide an overview of recent progress toward understanding the development of autoreactive T cells and epigenetic mechanisms stabilizing their developmental state during T1D pathogenesis.
期刊介绍:
Cold Spring Harbor Perspectives in Medicine is a monthly online publication comprising reviews on different aspects of a variety of diseases, covering everything from the molecular and cellular bases of disease to translational medicine and new therapeutic strategies.
Cold Spring Harbor Perspectives in Medicine is thus unmatched in its depth of coverage and represents an essential source where readers can find informed surveys and critical discussion of advances in molecular medicine.