基于 POD 技术的半线性抛物方程降阶双网格法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Junpeng Song, Hongxing Rui
{"title":"基于 POD 技术的半线性抛物方程降阶双网格法","authors":"Junpeng Song,&nbsp;Hongxing Rui","doi":"10.1016/j.apnum.2024.07.012","DOIUrl":null,"url":null,"abstract":"<div><p>In the conventional two-grid (TG) method, the nonlinear system on the fine grid is transformed into a nonlinear subsystem on the coarse grid and a linear subsystem on the fine grid to reduce computational costs. It has been successfully applied in various fields. Nonetheless, its computational efficiency remains relatively low. For this, we develop a novel reduced-order two-grid (ROTG) method with less degrees of freedom for solving the semilinear parabolic equation. For the two subsystems mentioned, the proper orthogonal decomposition (POD) technique is utilized to substantially reduce degrees of freedom. An a priori error estimate for the ROTG scheme is derived. Finally, we conduct several numerical tests to observe the ROTG method's behavior and verify the theoretical analysis.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A reduced-order two-grid method based on POD technique for the semilinear parabolic equation\",\"authors\":\"Junpeng Song,&nbsp;Hongxing Rui\",\"doi\":\"10.1016/j.apnum.2024.07.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the conventional two-grid (TG) method, the nonlinear system on the fine grid is transformed into a nonlinear subsystem on the coarse grid and a linear subsystem on the fine grid to reduce computational costs. It has been successfully applied in various fields. Nonetheless, its computational efficiency remains relatively low. For this, we develop a novel reduced-order two-grid (ROTG) method with less degrees of freedom for solving the semilinear parabolic equation. For the two subsystems mentioned, the proper orthogonal decomposition (POD) technique is utilized to substantially reduce degrees of freedom. An a priori error estimate for the ROTG scheme is derived. Finally, we conduct several numerical tests to observe the ROTG method's behavior and verify the theoretical analysis.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在传统的双网格(TG)方法中,细网格上的非线性系统被转化为粗网格上的非线性子系统和细网格上的线性子系统,以降低计算成本。这种方法已成功应用于多个领域。然而,其计算效率仍然相对较低。为此,我们开发了一种新颖的减少自由度的双网格(ROTG)方法,用于求解半线性抛物方程。对于上述两个子系统,我们利用适当的正交分解(POD)技术来大幅减少自由度。我们还得出了 ROTG 方案的先验误差估计值。最后,我们进行了几次数值测试,以观察 ROTG 方法的行为并验证理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reduced-order two-grid method based on POD technique for the semilinear parabolic equation

In the conventional two-grid (TG) method, the nonlinear system on the fine grid is transformed into a nonlinear subsystem on the coarse grid and a linear subsystem on the fine grid to reduce computational costs. It has been successfully applied in various fields. Nonetheless, its computational efficiency remains relatively low. For this, we develop a novel reduced-order two-grid (ROTG) method with less degrees of freedom for solving the semilinear parabolic equation. For the two subsystems mentioned, the proper orthogonal decomposition (POD) technique is utilized to substantially reduce degrees of freedom. An a priori error estimate for the ROTG scheme is derived. Finally, we conduct several numerical tests to observe the ROTG method's behavior and verify the theoretical analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信