{"title":"微波纳维-斯托克斯方程的旋转速度校正投影法","authors":"Zhiyong Si , Ziyi Li , Leilei Wei","doi":"10.1016/j.apnum.2024.07.013","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a velocity correction projection method for the Micropolar Navier-Stokes Equations. The velocity correction method are adopted to approximate the time derivative term, stability analysis and error estimation of the first-order semi-discrete scheme are proved. At the same time, the optimal error estimate using the technique of dual norm are obtained. In this way, the divergence free of the velocity <strong>u</strong> can be conserved. Finally, the numerical results show the method has an optimal convergence order. The numerical results are consistent with our theoretical analysis, and our method is effective.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rotational velocity-correction projection method for the Micropolar Navier-Stokes equations\",\"authors\":\"Zhiyong Si , Ziyi Li , Leilei Wei\",\"doi\":\"10.1016/j.apnum.2024.07.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce a velocity correction projection method for the Micropolar Navier-Stokes Equations. The velocity correction method are adopted to approximate the time derivative term, stability analysis and error estimation of the first-order semi-discrete scheme are proved. At the same time, the optimal error estimate using the technique of dual norm are obtained. In this way, the divergence free of the velocity <strong>u</strong> can be conserved. Finally, the numerical results show the method has an optimal convergence order. The numerical results are consistent with our theoretical analysis, and our method is effective.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A rotational velocity-correction projection method for the Micropolar Navier-Stokes equations
In this paper, we introduce a velocity correction projection method for the Micropolar Navier-Stokes Equations. The velocity correction method are adopted to approximate the time derivative term, stability analysis and error estimation of the first-order semi-discrete scheme are proved. At the same time, the optimal error estimate using the technique of dual norm are obtained. In this way, the divergence free of the velocity u can be conserved. Finally, the numerical results show the method has an optimal convergence order. The numerical results are consistent with our theoretical analysis, and our method is effective.