微波纳维-斯托克斯方程的旋转速度校正投影法

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Zhiyong Si , Ziyi Li , Leilei Wei
{"title":"微波纳维-斯托克斯方程的旋转速度校正投影法","authors":"Zhiyong Si ,&nbsp;Ziyi Li ,&nbsp;Leilei Wei","doi":"10.1016/j.apnum.2024.07.013","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a velocity correction projection method for the Micropolar Navier-Stokes Equations. The velocity correction method are adopted to approximate the time derivative term, stability analysis and error estimation of the first-order semi-discrete scheme are proved. At the same time, the optimal error estimate using the technique of dual norm are obtained. In this way, the divergence free of the velocity <strong>u</strong> can be conserved. Finally, the numerical results show the method has an optimal convergence order. The numerical results are consistent with our theoretical analysis, and our method is effective.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"205 ","pages":"Pages 267-280"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rotational velocity-correction projection method for the Micropolar Navier-Stokes equations\",\"authors\":\"Zhiyong Si ,&nbsp;Ziyi Li ,&nbsp;Leilei Wei\",\"doi\":\"10.1016/j.apnum.2024.07.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce a velocity correction projection method for the Micropolar Navier-Stokes Equations. The velocity correction method are adopted to approximate the time derivative term, stability analysis and error estimation of the first-order semi-discrete scheme are proved. At the same time, the optimal error estimate using the technique of dual norm are obtained. In this way, the divergence free of the velocity <strong>u</strong> can be conserved. Finally, the numerical results show the method has an optimal convergence order. The numerical results are consistent with our theoretical analysis, and our method is effective.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"205 \",\"pages\":\"Pages 267-280\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001934\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001934","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了微波纳维-斯托克斯方程的速度修正投影法。采用速度修正法近似时间导数项,证明了一阶半离散方案的稳定性分析和误差估计。同时,利用对偶规范技术获得了最优误差估计。这样,速度的无发散性就可以得到保护。最后,数值结果表明该方法具有最佳收敛阶次。数值结果与我们的理论分析一致,我们的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rotational velocity-correction projection method for the Micropolar Navier-Stokes equations

In this paper, we introduce a velocity correction projection method for the Micropolar Navier-Stokes Equations. The velocity correction method are adopted to approximate the time derivative term, stability analysis and error estimation of the first-order semi-discrete scheme are proved. At the same time, the optimal error estimate using the technique of dual norm are obtained. In this way, the divergence free of the velocity u can be conserved. Finally, the numerical results show the method has an optimal convergence order. The numerical results are consistent with our theoretical analysis, and our method is effective.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信