具有混合分散和临界指数增长的切尔诺-西蒙斯-薛定谔系统的归一化解法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Chenlu Wei, Lixi Wen
{"title":"具有混合分散和临界指数增长的切尔诺-西蒙斯-薛定谔系统的归一化解法","authors":"Chenlu Wei, Lixi Wen","doi":"10.1002/mma.10383","DOIUrl":null,"url":null,"abstract":"This paper focuses on the existence of normalized solutions for the Chern–Simons–Schrödinger system with mixed dispersion and critical exponential growth. These solutions correspond to critical points of the underlying energy functional under the ‐norm constraint, namely, . Under certain mild assumptions, we establish the existence of nontrivial solutions by developing new mathematical strategies and analytical techniques for the given system. These results extend and improve the results in the existing literature.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized solutions for Chern–Simons–Schrödinger system with mixed dispersion and critical exponential growth\",\"authors\":\"Chenlu Wei, Lixi Wen\",\"doi\":\"10.1002/mma.10383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the existence of normalized solutions for the Chern–Simons–Schrödinger system with mixed dispersion and critical exponential growth. These solutions correspond to critical points of the underlying energy functional under the ‐norm constraint, namely, . Under certain mild assumptions, we establish the existence of nontrivial solutions by developing new mathematical strategies and analytical techniques for the given system. These results extend and improve the results in the existing literature.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mma.10383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究具有混合分散和临界指数增长的切尔-西蒙斯-薛定谔系统的归一化解的存在性。这些解对应于-规范约束下基本能量函数的临界点,即 。在某些温和的假设条件下,我们通过为给定系统开发新的数学策略和分析技术,建立了非微观解的存在性。这些结果扩展并改进了现有文献中的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalized solutions for Chern–Simons–Schrödinger system with mixed dispersion and critical exponential growth
This paper focuses on the existence of normalized solutions for the Chern–Simons–Schrödinger system with mixed dispersion and critical exponential growth. These solutions correspond to critical points of the underlying energy functional under the ‐norm constraint, namely, . Under certain mild assumptions, we establish the existence of nontrivial solutions by developing new mathematical strategies and analytical techniques for the given system. These results extend and improve the results in the existing literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信