论单继承函数理论的一元非嵌套 PFP 运算符的不可判定性

IF 0.5 Q3 MATHEMATICS
V. S. Sekorin
{"title":"论单继承函数理论的一元非嵌套 PFP 运算符的不可判定性","authors":"V. S. Sekorin","doi":"10.3103/s1066369x24700300","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We investigate the decidability of first-order logic extensions. For example, it is established in Zolotov’s works that a logic with a unary transitive closure operator for the one successor theory is decidable. We show that in a similar case, a logic with a unary partial fixed point operator is undecidable. For this purpose, we reduce the halting problem for the counter machine to the problem of truth of the underlying formula. This reduction uses only one unary nonnested partial fixed operator that is applied to a universal or existential formula.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"83 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Undecidability of Unary Nonnested PFP Operators for One Successor Function Theory\",\"authors\":\"V. S. Sekorin\",\"doi\":\"10.3103/s1066369x24700300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>We investigate the decidability of first-order logic extensions. For example, it is established in Zolotov’s works that a logic with a unary transitive closure operator for the one successor theory is decidable. We show that in a similar case, a logic with a unary partial fixed point operator is undecidable. For this purpose, we reduce the halting problem for the counter machine to the problem of truth of the underlying formula. This reduction uses only one unary nonnested partial fixed operator that is applied to a universal or existential formula.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了一阶逻辑扩展的可判定性。例如,佐洛托夫在其著作中指出,具有一元传递闭包算子的一阶理论逻辑是可判定的。我们证明,在类似情况下,具有一元部分定点算子的逻辑是不可判定的。为此,我们将计数器的停止问题简化为底层公式的真值问题。这种还原只使用一个一元非嵌套部分定点算子,它适用于一个普遍式或存在式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Undecidability of Unary Nonnested PFP Operators for One Successor Function Theory

Abstract

We investigate the decidability of first-order logic extensions. For example, it is established in Zolotov’s works that a logic with a unary transitive closure operator for the one successor theory is decidable. We show that in a similar case, a logic with a unary partial fixed point operator is undecidable. For this purpose, we reduce the halting problem for the counter machine to the problem of truth of the underlying formula. This reduction uses only one unary nonnested partial fixed operator that is applied to a universal or existential formula.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信