{"title":"Hp 空间上的变分与λ-跳跃不等式","authors":"S. Demir","doi":"10.3103/s1066369x24700233","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Let <span>\\(\\phi \\in \\mathcal{S}\\)</span> with <span>\\(\\int \\phi (x){\\kern 1pt} dx = 1\\)</span>, and define <span>\\({{\\phi }_{t}}(x) = \\frac{1}{{{{t}^{n}}}}\\phi \\left( {\\frac{x}{t}} \\right),\\)</span>\nand denote the function family <span>\\({{\\{ {{\\phi }_{t}} * f(x)\\} }_{{t > 0}}}\\)</span> by <span>\\(\\Phi * f(x)\\)</span>. Let <span>\\(\\mathcal{J}\\)</span> be a subset of <span>\\(\\mathbb{R}\\)</span> (or more generally an ordered index set), and suppose that there exists a constant <span>\\({{C}_{1}}\\)</span> such that <span>\\(\\sum\\limits_{t \\in \\mathcal{J}} {\\kern 1pt} {\\kern 1pt} {\\text{|}}{{\\hat {\\phi }}_{t}}(x){{{\\text{|}}}^{2}} < {{C}_{1}}\\)</span>\nfor all <span>\\(x \\in {{\\mathbb{R}}^{n}}\\)</span>. Then</p><p> (i) There exists a constant <span>\\({{C}_{2}} > 0\\)</span> such that <span>\\({\\text{||}}{{\\mathcal{V}}_{2}}(\\Phi * f){\\text{|}}{{{\\text{|}}}_{{{{L}^{p}}}}} \\leqslant {{C}_{2}}{\\text{||}}f{\\text{|}}{{{\\text{|}}}_{{{{H}^{p}}}}},\\quad \\frac{n}{{n + 1}} < p \\leqslant 1\\)</span> for all <span>\\(f \\in {{H}^{p}}({{\\mathbb{R}}^{n}})\\)</span>, <span>\\(\\frac{n}{{n + 1}} < p \\leqslant 1\\)</span>.</p><p> (ii) The λ-jump operator <span>\\({{N}_{\\lambda }}(\\Phi * f)\\)</span> satisfies\n<span>\\({\\text{||}}\\lambda {{[{{N}_{\\lambda }}(\\Phi * f)]}^{{1/2}}}{\\text{|}}{{{\\text{|}}}_{{{{L}^{p}}}}} \\leqslant {{C}_{3}}{\\text{||}}f{\\text{|}}{{{\\text{|}}}_{{{{H}^{p}}}}},\\quad \\frac{n}{{n + 1}} < p \\leqslant 1,\\)</span> uniformly in <span>\\(\\lambda > 0\\)</span> for some constant <span>\\({{C}_{3}} > 0\\)</span>.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"58 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation and λ-Jump Inequalities on Hp Spaces\",\"authors\":\"S. Demir\",\"doi\":\"10.3103/s1066369x24700233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Let <span>\\\\(\\\\phi \\\\in \\\\mathcal{S}\\\\)</span> with <span>\\\\(\\\\int \\\\phi (x){\\\\kern 1pt} dx = 1\\\\)</span>, and define <span>\\\\({{\\\\phi }_{t}}(x) = \\\\frac{1}{{{{t}^{n}}}}\\\\phi \\\\left( {\\\\frac{x}{t}} \\\\right),\\\\)</span>\\nand denote the function family <span>\\\\({{\\\\{ {{\\\\phi }_{t}} * f(x)\\\\} }_{{t > 0}}}\\\\)</span> by <span>\\\\(\\\\Phi * f(x)\\\\)</span>. Let <span>\\\\(\\\\mathcal{J}\\\\)</span> be a subset of <span>\\\\(\\\\mathbb{R}\\\\)</span> (or more generally an ordered index set), and suppose that there exists a constant <span>\\\\({{C}_{1}}\\\\)</span> such that <span>\\\\(\\\\sum\\\\limits_{t \\\\in \\\\mathcal{J}} {\\\\kern 1pt} {\\\\kern 1pt} {\\\\text{|}}{{\\\\hat {\\\\phi }}_{t}}(x){{{\\\\text{|}}}^{2}} < {{C}_{1}}\\\\)</span>\\nfor all <span>\\\\(x \\\\in {{\\\\mathbb{R}}^{n}}\\\\)</span>. Then</p><p> (i) There exists a constant <span>\\\\({{C}_{2}} > 0\\\\)</span> such that <span>\\\\({\\\\text{||}}{{\\\\mathcal{V}}_{2}}(\\\\Phi * f){\\\\text{|}}{{{\\\\text{|}}}_{{{{L}^{p}}}}} \\\\leqslant {{C}_{2}}{\\\\text{||}}f{\\\\text{|}}{{{\\\\text{|}}}_{{{{H}^{p}}}}},\\\\quad \\\\frac{n}{{n + 1}} < p \\\\leqslant 1\\\\)</span> for all <span>\\\\(f \\\\in {{H}^{p}}({{\\\\mathbb{R}}^{n}})\\\\)</span>, <span>\\\\(\\\\frac{n}{{n + 1}} < p \\\\leqslant 1\\\\)</span>.</p><p> (ii) The λ-jump operator <span>\\\\({{N}_{\\\\lambda }}(\\\\Phi * f)\\\\)</span> satisfies\\n<span>\\\\({\\\\text{||}}\\\\lambda {{[{{N}_{\\\\lambda }}(\\\\Phi * f)]}^{{1/2}}}{\\\\text{|}}{{{\\\\text{|}}}_{{{{L}^{p}}}}} \\\\leqslant {{C}_{3}}{\\\\text{||}}f{\\\\text{|}}{{{\\\\text{|}}}_{{{{H}^{p}}}}},\\\\quad \\\\frac{n}{{n + 1}} < p \\\\leqslant 1,\\\\)</span> uniformly in <span>\\\\(\\\\lambda > 0\\\\)</span> for some constant <span>\\\\({{C}_{3}} > 0\\\\)</span>.</p>\",\"PeriodicalId\":46110,\"journal\":{\"name\":\"Russian Mathematics\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066369x24700233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
AbstractLet \(\phi \in \mathcal{S}\) with \(\int \phi (x){\kern 1pt} dx = 1\)、并定义 \({{\phi }_{t}}(x) = \frac{1}{{{{t}^{n}}}}\phi \left( {\frac{x}{t}} \right),\)and denote the function family\({{\ {{\phi }_{t}})* f(x)\}}_{{t > 0}}}) by \(\Phi * f(x)\).让 \(\mathcal{J}\) 是 \(\mathbb{R}}\) 的一个子集(或者更笼统地说,是一个有序索引集),并假设存在一个常数 \({{C}_{1}}\) 使得 \(\sum\limits_{t \in \mathcal{J}}){text{|}}{hat {\phi }}_{t}}(x){{{text{|}}}^{2}} < {{C}_{1}}}\)for all \(x \ in {{\mathbb{R}}^{n}}\).Then (i) There exists a constant \({{C}_{2}} > 0\) such that \({\text{||}}{\mathcal{V}}_{2}}(\Phi * f){\text{|}}{{\text{|}}_{{{{L}}^{p}}}}}\leqslant {{C}_{2}}{{text{||}}f{\text{|}}{{{\text{|}}}{{{{{{H}}^{p}}}}},\quad \frac{n}{{n + 1}} <;p leqslant 1\) for all \(f \in {{H}^{p}}({{\mathbb{R}}^{n}})\), \(\frac{n}{{n + 1}} < p leqslant 1\).(ii) λ-jump 算子 \({{N}_{\lambda }}(\Phi * f)\) satisfies\({\text{||}}\lambda {{[{{N}_{\lambda }}(\Phi * f)]}^{1/2}}}}{{text{|}}}{{{\text{|}}}_{{{{L}^{p}}}}}\leqslant {{C}_{3}}{text{||}}f{text{|}}{{{\text{|}}}{_{{{{H}}^{p}}}}},\quad \frac{n}{{n + 1}} < p \leqslant 1,\)在某个常数 \({{C}_{3}} > 0\) 下均匀地在\(\lambda > 0\) 中。
Let \(\phi \in \mathcal{S}\) with \(\int \phi (x){\kern 1pt} dx = 1\), and define \({{\phi }_{t}}(x) = \frac{1}{{{{t}^{n}}}}\phi \left( {\frac{x}{t}} \right),\)
and denote the function family \({{\{ {{\phi }_{t}} * f(x)\} }_{{t > 0}}}\) by \(\Phi * f(x)\). Let \(\mathcal{J}\) be a subset of \(\mathbb{R}\) (or more generally an ordered index set), and suppose that there exists a constant \({{C}_{1}}\) such that \(\sum\limits_{t \in \mathcal{J}} {\kern 1pt} {\kern 1pt} {\text{|}}{{\hat {\phi }}_{t}}(x){{{\text{|}}}^{2}} < {{C}_{1}}\)
for all \(x \in {{\mathbb{R}}^{n}}\). Then
(i) There exists a constant \({{C}_{2}} > 0\) such that \({\text{||}}{{\mathcal{V}}_{2}}(\Phi * f){\text{|}}{{{\text{|}}}_{{{{L}^{p}}}}} \leqslant {{C}_{2}}{\text{||}}f{\text{|}}{{{\text{|}}}_{{{{H}^{p}}}}},\quad \frac{n}{{n + 1}} < p \leqslant 1\) for all \(f \in {{H}^{p}}({{\mathbb{R}}^{n}})\), \(\frac{n}{{n + 1}} < p \leqslant 1\).
(ii) The λ-jump operator \({{N}_{\lambda }}(\Phi * f)\) satisfies
\({\text{||}}\lambda {{[{{N}_{\lambda }}(\Phi * f)]}^{{1/2}}}{\text{|}}{{{\text{|}}}_{{{{L}^{p}}}}} \leqslant {{C}_{3}}{\text{||}}f{\text{|}}{{{\text{|}}}_{{{{H}^{p}}}}},\quad \frac{n}{{n + 1}} < p \leqslant 1,\) uniformly in \(\lambda > 0\) for some constant \({{C}_{3}} > 0\).