Matteo Lombardo, Francesco Centurelli, Pietro Monsurrò, Alessandro Trifiletti
{"title":"28 纳米 CMOS FD-SOI 技术中基于 FVF 的新型 GHz 范围双四极管","authors":"Matteo Lombardo, Francesco Centurelli, Pietro Monsurrò, Alessandro Trifiletti","doi":"10.1016/j.aeue.2024.155466","DOIUrl":null,"url":null,"abstract":"<div><p>Inductor-less CMOS filters with bandwidth exceeding several GHz are required in high-speed data converter applications. This paper introduces two complementary biquad filters, one N-based and the other P-based, utilizing the well-established flipped voltage follower (FVF) stage. These filters exhibit more than 7 GHz cut-off frequency and a low power consumption of 0.54 mW/pole for the N-type biquad, and 0.3 mW/pole for the P-type one, demonstrating impressive figures-of-merit (FOMs) even considering bandwidth and dynamic range. The implementation of these biquads in the STMicroelectronics FD-SOI 28-nm CMOS process, along with extensive simulations, ensures stable performance under process, supply voltage and temperature (PVT) variations and mismatches, as confirmed by post-layout simulations. Notably, the area occupied by each biquad is merely 246 μm<sup>2</sup> for N-type biquad and 193 μm<sup>2</sup> for P-type, marking one of the smallest footprints in the existing literature. The achieved figures-of-merit are noteworthy, showcasing excellent power efficiency, minimal area occupation, and commendable dynamic range.</p></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"185 ","pages":"Article 155466"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel FVF-based GHz-range biquad in a 28 nm CMOS FD-SOI technology\",\"authors\":\"Matteo Lombardo, Francesco Centurelli, Pietro Monsurrò, Alessandro Trifiletti\",\"doi\":\"10.1016/j.aeue.2024.155466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inductor-less CMOS filters with bandwidth exceeding several GHz are required in high-speed data converter applications. This paper introduces two complementary biquad filters, one N-based and the other P-based, utilizing the well-established flipped voltage follower (FVF) stage. These filters exhibit more than 7 GHz cut-off frequency and a low power consumption of 0.54 mW/pole for the N-type biquad, and 0.3 mW/pole for the P-type one, demonstrating impressive figures-of-merit (FOMs) even considering bandwidth and dynamic range. The implementation of these biquads in the STMicroelectronics FD-SOI 28-nm CMOS process, along with extensive simulations, ensures stable performance under process, supply voltage and temperature (PVT) variations and mismatches, as confirmed by post-layout simulations. Notably, the area occupied by each biquad is merely 246 μm<sup>2</sup> for N-type biquad and 193 μm<sup>2</sup> for P-type, marking one of the smallest footprints in the existing literature. The achieved figures-of-merit are noteworthy, showcasing excellent power efficiency, minimal area occupation, and commendable dynamic range.</p></div>\",\"PeriodicalId\":50844,\"journal\":{\"name\":\"Aeu-International Journal of Electronics and Communications\",\"volume\":\"185 \",\"pages\":\"Article 155466\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aeu-International Journal of Electronics and Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1434841124003522\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841124003522","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A novel FVF-based GHz-range biquad in a 28 nm CMOS FD-SOI technology
Inductor-less CMOS filters with bandwidth exceeding several GHz are required in high-speed data converter applications. This paper introduces two complementary biquad filters, one N-based and the other P-based, utilizing the well-established flipped voltage follower (FVF) stage. These filters exhibit more than 7 GHz cut-off frequency and a low power consumption of 0.54 mW/pole for the N-type biquad, and 0.3 mW/pole for the P-type one, demonstrating impressive figures-of-merit (FOMs) even considering bandwidth and dynamic range. The implementation of these biquads in the STMicroelectronics FD-SOI 28-nm CMOS process, along with extensive simulations, ensures stable performance under process, supply voltage and temperature (PVT) variations and mismatches, as confirmed by post-layout simulations. Notably, the area occupied by each biquad is merely 246 μm2 for N-type biquad and 193 μm2 for P-type, marking one of the smallest footprints in the existing literature. The achieved figures-of-merit are noteworthy, showcasing excellent power efficiency, minimal area occupation, and commendable dynamic range.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.