充分退火后 MOCVD 生长的 p-GaN 在室温下的可实现空穴浓度与镁浓度的函数关系

IF 4.8 4区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Siyi Huang, Masao Ikeda, Feng Zhang, Minglong Zhang, Jianjun Zhu, Shuming Zhang and Jianping Liu
{"title":"充分退火后 MOCVD 生长的 p-GaN 在室温下的可实现空穴浓度与镁浓度的函数关系","authors":"Siyi Huang, Masao Ikeda, Feng Zhang, Minglong Zhang, Jianjun Zhu, Shuming Zhang and Jianping Liu","doi":"10.1088/1674-4926/24010017","DOIUrl":null,"url":null,"abstract":"Relationship between the hole concentration at room temperature and the Mg doping concentration in p-GaN grown by MOCVD after sufficient annealing was studied in this paper. Different annealing conditions were applied to obtain sufficient activation for p-GaN samples with different Mg doping ranges. Hole concentration, resistivity and mobility were characterized by room-temperature Hall measurements. The Mg doping concentration and the residual impurities such as H, C, O and Si were measured by secondary ion mass spectroscopy, confirming negligible compensations by the impurities. The hole concentration, resistivity and mobility data are presented as a function of Mg concentration, and are compared with literature data. The appropriate curve relating the Mg doping concentration to the hole concentration is derived using a charge neutrality equation and the ionized-acceptor-density [ ] (cm−3) dependent ionization energy of Mg acceptor was determined as = 184 − 2.66 × 10−5 × [ ]1/3 meV.","PeriodicalId":17038,"journal":{"name":"Journal of Semiconductors","volume":"27 Pt 4 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achievable hole concentration at room temperature as a function of Mg concentration for MOCVD-grown p-GaN after sufficient annealing\",\"authors\":\"Siyi Huang, Masao Ikeda, Feng Zhang, Minglong Zhang, Jianjun Zhu, Shuming Zhang and Jianping Liu\",\"doi\":\"10.1088/1674-4926/24010017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relationship between the hole concentration at room temperature and the Mg doping concentration in p-GaN grown by MOCVD after sufficient annealing was studied in this paper. Different annealing conditions were applied to obtain sufficient activation for p-GaN samples with different Mg doping ranges. Hole concentration, resistivity and mobility were characterized by room-temperature Hall measurements. The Mg doping concentration and the residual impurities such as H, C, O and Si were measured by secondary ion mass spectroscopy, confirming negligible compensations by the impurities. The hole concentration, resistivity and mobility data are presented as a function of Mg concentration, and are compared with literature data. The appropriate curve relating the Mg doping concentration to the hole concentration is derived using a charge neutrality equation and the ionized-acceptor-density [ ] (cm−3) dependent ionization energy of Mg acceptor was determined as = 184 − 2.66 × 10−5 × [ ]1/3 meV.\",\"PeriodicalId\":17038,\"journal\":{\"name\":\"Journal of Semiconductors\",\"volume\":\"27 Pt 4 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Semiconductors\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4926/24010017\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4926/24010017","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了通过 MOCVD 技术生长的 p-GaN 在充分退火后室温下的空穴浓度与掺镁浓度之间的关系。对不同掺镁范围的 p-GaN 样品采用了不同的退火条件以获得充分的活化。通过室温霍尔测量表征了空穴浓度、电阻率和迁移率。通过二次离子质谱法测量了掺镁浓度以及 H、C、O 和 Si 等残留杂质,证实杂质的补偿作用可以忽略不计。空穴浓度、电阻率和迁移率数据是掺镁浓度的函数,并与文献数据进行了比较。利用电荷中性方程推导出了掺镁浓度与空穴浓度之间的适当曲线,并确定了镁受体的电离能与电离受体密度[ ](cm-3)有关,即 = 184 - 2.66 × 10-5 × [ ]1/3 meV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achievable hole concentration at room temperature as a function of Mg concentration for MOCVD-grown p-GaN after sufficient annealing
Relationship between the hole concentration at room temperature and the Mg doping concentration in p-GaN grown by MOCVD after sufficient annealing was studied in this paper. Different annealing conditions were applied to obtain sufficient activation for p-GaN samples with different Mg doping ranges. Hole concentration, resistivity and mobility were characterized by room-temperature Hall measurements. The Mg doping concentration and the residual impurities such as H, C, O and Si were measured by secondary ion mass spectroscopy, confirming negligible compensations by the impurities. The hole concentration, resistivity and mobility data are presented as a function of Mg concentration, and are compared with literature data. The appropriate curve relating the Mg doping concentration to the hole concentration is derived using a charge neutrality equation and the ionized-acceptor-density [ ] (cm−3) dependent ionization energy of Mg acceptor was determined as = 184 − 2.66 × 10−5 × [ ]1/3 meV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Semiconductors
Journal of Semiconductors PHYSICS, CONDENSED MATTER-
CiteScore
6.70
自引率
9.80%
发文量
119
期刊介绍: Journal of Semiconductors publishes articles that emphasize semiconductor physics, materials, devices, circuits, and related technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信