Wei Wang, Wenli Liu, Junyuan Zhao, Bo Niu, Zeyu Wu, Yinfang Zhu, Jinling Yang and Fuhua Yang
{"title":"具有高 Q 值宽度扩展模式谐振器的机械耦合 MEMS 滤波器","authors":"Wei Wang, Wenli Liu, Junyuan Zhao, Bo Niu, Zeyu Wu, Yinfang Zhu, Jinling Yang and Fuhua Yang","doi":"10.1088/1674-4926/24050007","DOIUrl":null,"url":null,"abstract":"This work presents a novel radio frequency (RF) narrowband Si micro-electro-mechanical systems (MEMS) filter based on capacitively transduced slotted width extensional mode (WEM) resonators. The flexibility of the plate leads to multiple modes near the target frequency. The high Q-factor resonators of around 100 000 enable narrow bandwidth filters with small size and simplified design. The 1-wavelength and 2-wavelength WEMs were first developed as a pair of coupled modes to form a passband. To reduce bandwidth, two plates are coupled with a λ-length coupling beam. The 79.69 MHz coupled plate filter (CPF) achieved a narrow bandwidth of 8.8 kHz, corresponding to a tiny 0.011%. The CPF exhibits an impressive 34.84 dB stopband rejection and 7.82 dB insertion loss with near-zero passband ripple. In summary, the RF MEMS filter presented in this work shows promising potential for application in RF transceiver front-ends.","PeriodicalId":17038,"journal":{"name":"Journal of Semiconductors","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mechanically coupled MEMS filter with high-Q width extensional mode resonators\",\"authors\":\"Wei Wang, Wenli Liu, Junyuan Zhao, Bo Niu, Zeyu Wu, Yinfang Zhu, Jinling Yang and Fuhua Yang\",\"doi\":\"10.1088/1674-4926/24050007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a novel radio frequency (RF) narrowband Si micro-electro-mechanical systems (MEMS) filter based on capacitively transduced slotted width extensional mode (WEM) resonators. The flexibility of the plate leads to multiple modes near the target frequency. The high Q-factor resonators of around 100 000 enable narrow bandwidth filters with small size and simplified design. The 1-wavelength and 2-wavelength WEMs were first developed as a pair of coupled modes to form a passband. To reduce bandwidth, two plates are coupled with a λ-length coupling beam. The 79.69 MHz coupled plate filter (CPF) achieved a narrow bandwidth of 8.8 kHz, corresponding to a tiny 0.011%. The CPF exhibits an impressive 34.84 dB stopband rejection and 7.82 dB insertion loss with near-zero passband ripple. In summary, the RF MEMS filter presented in this work shows promising potential for application in RF transceiver front-ends.\",\"PeriodicalId\":17038,\"journal\":{\"name\":\"Journal of Semiconductors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Semiconductors\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4926/24050007\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4926/24050007","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
A mechanically coupled MEMS filter with high-Q width extensional mode resonators
This work presents a novel radio frequency (RF) narrowband Si micro-electro-mechanical systems (MEMS) filter based on capacitively transduced slotted width extensional mode (WEM) resonators. The flexibility of the plate leads to multiple modes near the target frequency. The high Q-factor resonators of around 100 000 enable narrow bandwidth filters with small size and simplified design. The 1-wavelength and 2-wavelength WEMs were first developed as a pair of coupled modes to form a passband. To reduce bandwidth, two plates are coupled with a λ-length coupling beam. The 79.69 MHz coupled plate filter (CPF) achieved a narrow bandwidth of 8.8 kHz, corresponding to a tiny 0.011%. The CPF exhibits an impressive 34.84 dB stopband rejection and 7.82 dB insertion loss with near-zero passband ripple. In summary, the RF MEMS filter presented in this work shows promising potential for application in RF transceiver front-ends.