{"title":"用于肌肉食品微生物净化的可持续加工技术(脉冲光、电解水和臭氧处理","authors":"Nikheel Bhojraj Rathod , Slim Smaoui , Rinku Agrawal , Prashant Bhagwat , Ayodeji Amobonye , Santhosh Pillai , Nurten Yilmaz , Fatih Ozogul","doi":"10.1016/j.ifset.2024.103778","DOIUrl":null,"url":null,"abstract":"<div><p>Considering the high perishable nature of muscle foods (fish, poultry and red meat) and wide diversity in spoilage microorganisms responsible for spoilage, the prevalence of pathogenic microorganisms in muscle food spoilage is significant. There has been extensive coverage on the emergence of antibiotic resistance in food spoilage microbes in recent years. Chemical preservatives have been extensively employed for the preservation of muscle foods although they have been found to cause toxicity and are not environmentally sustainable. Nevertheless, the scientific community has shown a growing interest in recent breakthroughs in the utilization of innovative clean-label technologies for the preservation of muscle meals, owing to their sustainable characteristics. Among them pulsed light, electrolysed water and ozonation have been under wide exploration. The evaluated sustainable technologies have been found to effectively inhibit the microbial spoilage and reduce the development of antimicrobial resistance. This review discusses potentiality of sustainable technologies in preserving muscle foods with minimal deteriorative impact.</p></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"96 ","pages":"Article 103778"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable processing technologies (pulsed light, electrolysed water and ozonation) for microbial decontamination of muscle foods\",\"authors\":\"Nikheel Bhojraj Rathod , Slim Smaoui , Rinku Agrawal , Prashant Bhagwat , Ayodeji Amobonye , Santhosh Pillai , Nurten Yilmaz , Fatih Ozogul\",\"doi\":\"10.1016/j.ifset.2024.103778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Considering the high perishable nature of muscle foods (fish, poultry and red meat) and wide diversity in spoilage microorganisms responsible for spoilage, the prevalence of pathogenic microorganisms in muscle food spoilage is significant. There has been extensive coverage on the emergence of antibiotic resistance in food spoilage microbes in recent years. Chemical preservatives have been extensively employed for the preservation of muscle foods although they have been found to cause toxicity and are not environmentally sustainable. Nevertheless, the scientific community has shown a growing interest in recent breakthroughs in the utilization of innovative clean-label technologies for the preservation of muscle meals, owing to their sustainable characteristics. Among them pulsed light, electrolysed water and ozonation have been under wide exploration. The evaluated sustainable technologies have been found to effectively inhibit the microbial spoilage and reduce the development of antimicrobial resistance. This review discusses potentiality of sustainable technologies in preserving muscle foods with minimal deteriorative impact.</p></div>\",\"PeriodicalId\":329,\"journal\":{\"name\":\"Innovative Food Science & Emerging Technologies\",\"volume\":\"96 \",\"pages\":\"Article 103778\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovative Food Science & Emerging Technologies\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1466856424002170\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856424002170","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Sustainable processing technologies (pulsed light, electrolysed water and ozonation) for microbial decontamination of muscle foods
Considering the high perishable nature of muscle foods (fish, poultry and red meat) and wide diversity in spoilage microorganisms responsible for spoilage, the prevalence of pathogenic microorganisms in muscle food spoilage is significant. There has been extensive coverage on the emergence of antibiotic resistance in food spoilage microbes in recent years. Chemical preservatives have been extensively employed for the preservation of muscle foods although they have been found to cause toxicity and are not environmentally sustainable. Nevertheless, the scientific community has shown a growing interest in recent breakthroughs in the utilization of innovative clean-label technologies for the preservation of muscle meals, owing to their sustainable characteristics. Among them pulsed light, electrolysed water and ozonation have been under wide exploration. The evaluated sustainable technologies have been found to effectively inhibit the microbial spoilage and reduce the development of antimicrobial resistance. This review discusses potentiality of sustainable technologies in preserving muscle foods with minimal deteriorative impact.
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.