复杂连接低保真模型更新中确定性估算结构参数的基于模态的不确定性量化

IF 3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Milad Mehrkash, Erin Santini-Bell
{"title":"复杂连接低保真模型更新中确定性估算结构参数的基于模态的不确定性量化","authors":"Milad Mehrkash,&nbsp;Erin Santini-Bell","doi":"10.1016/j.probengmech.2024.103671","DOIUrl":null,"url":null,"abstract":"<div><p>Modeling complex joints in structures entails significant time and effort, necessitating simplifications. Epistemic uncertainties arising from low-fidelity modeling can be quantified through probabilistic model updating. However, finding a surrogate physical model to represent simplified joint configurations poses challenges. Additionally, establishing a Bayesian formulation capable of incorporating structural parameters of connections is necessary. This study employs a validated simplifying parameterization approach for surrogate modeling of complex semi-rigid connections in a benchmark laboratory steel grid. It proposes a modal probabilistic Bayesian methodology to quantify uncertainties in the structure's joints. Three modal-based objective functions are utilized for finite element model updating. The modal properties of the structure are extracted by experimental modal analysis during an impact test, which will be utilized in the model updating process. Deterministic and probabilistic structural parameter estimations are integrated to enhance the robustness of the Bayesian technique. Furthermore, a guideline for selecting optimal hyperparameters is provided. Results demonstrate that utilizing deterministically estimated parameters as prior knowledge can facilitate and improve modal probabilistic model updating for structures with complex joints. Also, it is found that despite significant simplifications of joints, structural parameter tolerance around the maximum a posteriori estimate in surrogate models remains low.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"77 ","pages":"Article 103671"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modal–based uncertainty quantification for deterministically estimated structural parameters in low-fidelity model updating of complex connections\",\"authors\":\"Milad Mehrkash,&nbsp;Erin Santini-Bell\",\"doi\":\"10.1016/j.probengmech.2024.103671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modeling complex joints in structures entails significant time and effort, necessitating simplifications. Epistemic uncertainties arising from low-fidelity modeling can be quantified through probabilistic model updating. However, finding a surrogate physical model to represent simplified joint configurations poses challenges. Additionally, establishing a Bayesian formulation capable of incorporating structural parameters of connections is necessary. This study employs a validated simplifying parameterization approach for surrogate modeling of complex semi-rigid connections in a benchmark laboratory steel grid. It proposes a modal probabilistic Bayesian methodology to quantify uncertainties in the structure's joints. Three modal-based objective functions are utilized for finite element model updating. The modal properties of the structure are extracted by experimental modal analysis during an impact test, which will be utilized in the model updating process. Deterministic and probabilistic structural parameter estimations are integrated to enhance the robustness of the Bayesian technique. Furthermore, a guideline for selecting optimal hyperparameters is provided. Results demonstrate that utilizing deterministically estimated parameters as prior knowledge can facilitate and improve modal probabilistic model updating for structures with complex joints. Also, it is found that despite significant simplifications of joints, structural parameter tolerance around the maximum a posteriori estimate in surrogate models remains low.</p></div>\",\"PeriodicalId\":54583,\"journal\":{\"name\":\"Probabilistic Engineering Mechanics\",\"volume\":\"77 \",\"pages\":\"Article 103671\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probabilistic Engineering Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266892024000936\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024000936","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

结构中复杂关节的建模需要花费大量的时间和精力,因此必须进行简化。低保真建模产生的认识不确定性可通过概率模型更新进行量化。然而,寻找一个替代物理模型来表示简化的关节配置是一项挑战。此外,还需要建立一个能够纳入连接结构参数的贝叶斯公式。本研究采用了一种经过验证的简化参数化方法,用于在基准实验室钢网格中对复杂的半刚性连接进行代理建模。它提出了一种模态概率贝叶斯方法来量化结构连接中的不确定性。利用三个基于模态的目标函数进行有限元模型更新。结构的模态属性是在冲击试验中通过实验模态分析提取的,将在模型更新过程中加以利用。确定性和概率性结构参数估计相结合,增强了贝叶斯技术的稳健性。此外,还提供了选择最佳超参数的指南。结果表明,利用确定性估计参数作为先验知识,可以促进和改进具有复杂接头的结构的模态概率模型更新。此外,研究还发现,尽管对关节进行了大量简化,代用模型中最大后验估计值附近的结构参数容差仍然很低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modal–based uncertainty quantification for deterministically estimated structural parameters in low-fidelity model updating of complex connections

Modeling complex joints in structures entails significant time and effort, necessitating simplifications. Epistemic uncertainties arising from low-fidelity modeling can be quantified through probabilistic model updating. However, finding a surrogate physical model to represent simplified joint configurations poses challenges. Additionally, establishing a Bayesian formulation capable of incorporating structural parameters of connections is necessary. This study employs a validated simplifying parameterization approach for surrogate modeling of complex semi-rigid connections in a benchmark laboratory steel grid. It proposes a modal probabilistic Bayesian methodology to quantify uncertainties in the structure's joints. Three modal-based objective functions are utilized for finite element model updating. The modal properties of the structure are extracted by experimental modal analysis during an impact test, which will be utilized in the model updating process. Deterministic and probabilistic structural parameter estimations are integrated to enhance the robustness of the Bayesian technique. Furthermore, a guideline for selecting optimal hyperparameters is provided. Results demonstrate that utilizing deterministically estimated parameters as prior knowledge can facilitate and improve modal probabilistic model updating for structures with complex joints. Also, it is found that despite significant simplifications of joints, structural parameter tolerance around the maximum a posteriori estimate in surrogate models remains low.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probabilistic Engineering Mechanics
Probabilistic Engineering Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
15.40%
发文量
98
审稿时长
13.5 months
期刊介绍: This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信