高效板坯连铸工艺二次冷却喷嘴的特性和高温传热实验研究

IF 1.9 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Jia-kun Li, Rong-jun Xu, Ming Lv, Xiong-bo Sun, Qi Gao, Zhong-ze Du, Zhao-hui Zhang
{"title":"高效板坯连铸工艺二次冷却喷嘴的特性和高温传热实验研究","authors":"Jia-kun Li,&nbsp;Rong-jun Xu,&nbsp;Ming Lv,&nbsp;Xiong-bo Sun,&nbsp;Qi Gao,&nbsp;Zhong-ze Du,&nbsp;Zhao-hui Zhang","doi":"10.1002/srin.202400357","DOIUrl":null,"url":null,"abstract":"<p>In the continuous casting process, the heat transfer effect of secondary cooling plays an important role in the quality of the slab. The cooling intensity and cooling uniformity of the secondary cooling nozzle need more efficient spray cooling to achieve. Herein, the cold characteristics of different types of nozzles were compared. It is found that the second type of air mist nozzles have more uniform water density and striking force. On this basis, high-temperature heat transfer experiments for casting billets were carried out to study the heat transfer coefficients of different air mist nozzles in the secondary cooling zone of continuous casting. It is found that the heat transfer coefficient increases as the distance of the temperature measurement point from the nozzle directly below increases. The heat transfer coefficients of the casting billet in both the jet and non-jet zones are decreasing to varying degrees. When the temperature drops to 600 °C, the second type of air mist nozzle shows a faster temperature drop at the point of measurement, a smaller difference in time taken for temperature drop between jet and non-jet zones, and faster and more uniform spraying, leading to a more significant trend of increasing heat transfer coefficient.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on the Characteristics and High-Temperature Heat Transfer of Secondary Cooling Nozzle for High-Efficiency Slab Continuous Casting Process\",\"authors\":\"Jia-kun Li,&nbsp;Rong-jun Xu,&nbsp;Ming Lv,&nbsp;Xiong-bo Sun,&nbsp;Qi Gao,&nbsp;Zhong-ze Du,&nbsp;Zhao-hui Zhang\",\"doi\":\"10.1002/srin.202400357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the continuous casting process, the heat transfer effect of secondary cooling plays an important role in the quality of the slab. The cooling intensity and cooling uniformity of the secondary cooling nozzle need more efficient spray cooling to achieve. Herein, the cold characteristics of different types of nozzles were compared. It is found that the second type of air mist nozzles have more uniform water density and striking force. On this basis, high-temperature heat transfer experiments for casting billets were carried out to study the heat transfer coefficients of different air mist nozzles in the secondary cooling zone of continuous casting. It is found that the heat transfer coefficient increases as the distance of the temperature measurement point from the nozzle directly below increases. The heat transfer coefficients of the casting billet in both the jet and non-jet zones are decreasing to varying degrees. When the temperature drops to 600 °C, the second type of air mist nozzle shows a faster temperature drop at the point of measurement, a smaller difference in time taken for temperature drop between jet and non-jet zones, and faster and more uniform spraying, leading to a more significant trend of increasing heat transfer coefficient.</p>\",\"PeriodicalId\":21929,\"journal\":{\"name\":\"steel research international\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"steel research international\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400357\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400357","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在连铸过程中,二次冷却的传热效果对板坯质量起着重要作用。二次冷却喷嘴的冷却强度和冷却均匀性需要更高效的喷雾冷却来实现。在此,比较了不同类型喷嘴的冷特性。结果发现,第二类气雾喷嘴的水密度和打击力更均匀。在此基础上,对铸坯进行了高温传热实验,研究了不同气雾喷嘴在连铸二次冷却区的传热系数。实验发现,随着测温点与正下方喷嘴距离的增加,传热系数也随之增加。铸坯在喷射区和非喷射区的传热系数都有不同程度的下降。当温度下降到 600 °C 时,第二种气雾喷嘴的测点温度下降速度更快,喷射区和非喷射区的温度下降时间差异更小,喷射速度更快、更均匀,从而导致传热系数有更明显的上升趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Study on the Characteristics and High-Temperature Heat Transfer of Secondary Cooling Nozzle for High-Efficiency Slab Continuous Casting Process

In the continuous casting process, the heat transfer effect of secondary cooling plays an important role in the quality of the slab. The cooling intensity and cooling uniformity of the secondary cooling nozzle need more efficient spray cooling to achieve. Herein, the cold characteristics of different types of nozzles were compared. It is found that the second type of air mist nozzles have more uniform water density and striking force. On this basis, high-temperature heat transfer experiments for casting billets were carried out to study the heat transfer coefficients of different air mist nozzles in the secondary cooling zone of continuous casting. It is found that the heat transfer coefficient increases as the distance of the temperature measurement point from the nozzle directly below increases. The heat transfer coefficients of the casting billet in both the jet and non-jet zones are decreasing to varying degrees. When the temperature drops to 600 °C, the second type of air mist nozzle shows a faster temperature drop at the point of measurement, a smaller difference in time taken for temperature drop between jet and non-jet zones, and faster and more uniform spraying, leading to a more significant trend of increasing heat transfer coefficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信