Song Zhang, Yanbing Zong, Yun Huang, Xiangyou Gui, Dian Lei, Jianliang Zhang, Xian Gan, Zhenyang Wang, Shushi Zhang, Peiyuan Lu
{"title":"碱度对钒钛磁铁矿球团抗压强度和氧化硬化机理的影响研究","authors":"Song Zhang, Yanbing Zong, Yun Huang, Xiangyou Gui, Dian Lei, Jianliang Zhang, Xian Gan, Zhenyang Wang, Shushi Zhang, Peiyuan Lu","doi":"10.1002/srin.202400461","DOIUrl":null,"url":null,"abstract":"<p>Currently, the typical charge structure for blast furnace smelting of vanadium–titanium magnetite (VTM) is the addition of acidic pellets, high-basicity sinters, and lumps. To increase the percentage of pellets entering the blast furnace, it is necessary to transfer the basicity burden to the pellets. In this study, the effect of basicity on the phase transition and oxidation hardening mechanism of VTM pellets is investigated. In the results, it is indicated that when the preheating temperature is 950 °C, the preheating time is 15 min, the roasting temperature is 1260 °C, and the roasting time is 15 min, with the basicity (CaO/SiO<sub>2</sub>) increasing from 0.08 to 1.3, the compressive strength of pellets shows a trend of “increasing first and then decreasing,” with the highest value reaching 3159 N pellet<sup>−1</sup> at basicity of 0.5. As the basicity increases, calcium ferrate can be generated by CaO in the liquid phase with Fe<sub>2</sub>O<sub>3</sub> in addition to silicate with SiO<sub>2</sub>, which will increase the amount of the liquid phase. With the increase of basicity, the oxide-bonded induration is gradually weakened, and the slag-bonded induration is gradually enhanced. A moderate amount of liquid phase can play the role of bonding and filling, thereby improving compressive strength.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Basicity on Compressive Strength and Oxidation Induration Mechanism of Vanadium–Titanium Magnetite Pellets\",\"authors\":\"Song Zhang, Yanbing Zong, Yun Huang, Xiangyou Gui, Dian Lei, Jianliang Zhang, Xian Gan, Zhenyang Wang, Shushi Zhang, Peiyuan Lu\",\"doi\":\"10.1002/srin.202400461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Currently, the typical charge structure for blast furnace smelting of vanadium–titanium magnetite (VTM) is the addition of acidic pellets, high-basicity sinters, and lumps. To increase the percentage of pellets entering the blast furnace, it is necessary to transfer the basicity burden to the pellets. In this study, the effect of basicity on the phase transition and oxidation hardening mechanism of VTM pellets is investigated. In the results, it is indicated that when the preheating temperature is 950 °C, the preheating time is 15 min, the roasting temperature is 1260 °C, and the roasting time is 15 min, with the basicity (CaO/SiO<sub>2</sub>) increasing from 0.08 to 1.3, the compressive strength of pellets shows a trend of “increasing first and then decreasing,” with the highest value reaching 3159 N pellet<sup>−1</sup> at basicity of 0.5. As the basicity increases, calcium ferrate can be generated by CaO in the liquid phase with Fe<sub>2</sub>O<sub>3</sub> in addition to silicate with SiO<sub>2</sub>, which will increase the amount of the liquid phase. With the increase of basicity, the oxide-bonded induration is gradually weakened, and the slag-bonded induration is gradually enhanced. A moderate amount of liquid phase can play the role of bonding and filling, thereby improving compressive strength.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400461\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400461","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of Basicity on Compressive Strength and Oxidation Induration Mechanism of Vanadium–Titanium Magnetite Pellets
Currently, the typical charge structure for blast furnace smelting of vanadium–titanium magnetite (VTM) is the addition of acidic pellets, high-basicity sinters, and lumps. To increase the percentage of pellets entering the blast furnace, it is necessary to transfer the basicity burden to the pellets. In this study, the effect of basicity on the phase transition and oxidation hardening mechanism of VTM pellets is investigated. In the results, it is indicated that when the preheating temperature is 950 °C, the preheating time is 15 min, the roasting temperature is 1260 °C, and the roasting time is 15 min, with the basicity (CaO/SiO2) increasing from 0.08 to 1.3, the compressive strength of pellets shows a trend of “increasing first and then decreasing,” with the highest value reaching 3159 N pellet−1 at basicity of 0.5. As the basicity increases, calcium ferrate can be generated by CaO in the liquid phase with Fe2O3 in addition to silicate with SiO2, which will increase the amount of the liquid phase. With the increase of basicity, the oxide-bonded induration is gradually weakened, and the slag-bonded induration is gradually enhanced. A moderate amount of liquid phase can play the role of bonding and filling, thereby improving compressive strength.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.