多任务有效性度量和自适应协同训练方法,用于提高样本数量少的学习绩效

IF 5.9 2区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiaoyao Wang, Fuzhou Du, Delong Zhao, Chang Liu
{"title":"多任务有效性度量和自适应协同训练方法,用于提高样本数量少的学习绩效","authors":"Xiaoyao Wang, Fuzhou Du, Delong Zhao, Chang Liu","doi":"10.1007/s10845-024-02475-3","DOIUrl":null,"url":null,"abstract":"<p>The integration of deep learning (DL) into vision inspection methods is increasingly recognized as a valuable approach to substantially enhance the adaptability and robustness. However, it is well known that high-performance neural networks typically require large training datasets with high-quality manual annotations, which are difficult to obtain in many manufacturing processes. To enhance the performance of DL methods for vision task with few samples, this paper proposes a novel metric called Effectiveness of Auxiliary Task (EAT) and presents a multi-task learning approach utilizing this metric for selecting effective auxiliary task branch and adaptive co-training them with main tasks. Experiments conducted on two vision tasks with few samples show that the proposed approach effectively eliminates ineffective task branches and enhances the contribution of the selected tasks to the main task: reducing the average normalized pixel error from 0.0613 to 0.0143 in pose key-points detection and elevating the Intersection over Union (IoU) from 0.6383 to 0.6921 in surface defect segmentation. Remarkably, these enhancements are achieved without necessitating additional manual labeling efforts.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"193 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-task effectiveness metric and an adaptive co-training method for enhancing learning performance with few samples\",\"authors\":\"Xiaoyao Wang, Fuzhou Du, Delong Zhao, Chang Liu\",\"doi\":\"10.1007/s10845-024-02475-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The integration of deep learning (DL) into vision inspection methods is increasingly recognized as a valuable approach to substantially enhance the adaptability and robustness. However, it is well known that high-performance neural networks typically require large training datasets with high-quality manual annotations, which are difficult to obtain in many manufacturing processes. To enhance the performance of DL methods for vision task with few samples, this paper proposes a novel metric called Effectiveness of Auxiliary Task (EAT) and presents a multi-task learning approach utilizing this metric for selecting effective auxiliary task branch and adaptive co-training them with main tasks. Experiments conducted on two vision tasks with few samples show that the proposed approach effectively eliminates ineffective task branches and enhances the contribution of the selected tasks to the main task: reducing the average normalized pixel error from 0.0613 to 0.0143 in pose key-points detection and elevating the Intersection over Union (IoU) from 0.6383 to 0.6921 in surface defect segmentation. Remarkably, these enhancements are achieved without necessitating additional manual labeling efforts.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02475-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02475-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

将深度学习(DL)集成到视觉检测方法中,越来越多的人认为这是一种有价值的方法,可大幅提高适应性和鲁棒性。然而,众所周知,高性能的神经网络通常需要带有高质量人工注释的大型训练数据集,而这在许多制造流程中很难获得。为了提高 DL 方法在样本较少的视觉任务中的性能,本文提出了一种名为辅助任务有效性(EAT)的新指标,并介绍了一种利用该指标选择有效辅助任务分支并将其与主任务进行自适应协同训练的多任务学习方法。在两个样本较少的视觉任务上进行的实验表明,所提出的方法有效地消除了无效的任务分支,并增强了所选任务对主任务的贡献:在姿势关键点检测中,平均归一化像素误差从 0.0613 降至 0.0143;在表面缺陷分割中,交集大于联合(IoU)从 0.6383 升至 0.6921。值得注意的是,这些改进都是在无需额外人工标注的情况下实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A multi-task effectiveness metric and an adaptive co-training method for enhancing learning performance with few samples

A multi-task effectiveness metric and an adaptive co-training method for enhancing learning performance with few samples

The integration of deep learning (DL) into vision inspection methods is increasingly recognized as a valuable approach to substantially enhance the adaptability and robustness. However, it is well known that high-performance neural networks typically require large training datasets with high-quality manual annotations, which are difficult to obtain in many manufacturing processes. To enhance the performance of DL methods for vision task with few samples, this paper proposes a novel metric called Effectiveness of Auxiliary Task (EAT) and presents a multi-task learning approach utilizing this metric for selecting effective auxiliary task branch and adaptive co-training them with main tasks. Experiments conducted on two vision tasks with few samples show that the proposed approach effectively eliminates ineffective task branches and enhances the contribution of the selected tasks to the main task: reducing the average normalized pixel error from 0.0613 to 0.0143 in pose key-points detection and elevating the Intersection over Union (IoU) from 0.6383 to 0.6921 in surface defect segmentation. Remarkably, these enhancements are achieved without necessitating additional manual labeling efforts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Manufacturing
Journal of Intelligent Manufacturing 工程技术-工程:制造
CiteScore
19.30
自引率
9.60%
发文量
171
审稿时长
5.2 months
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信