基于多路复用器的高容量自旋电子突触

IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Mahan Rezaei;Ermia Elahi;Arefe Amirany;Mohammad Hossein Moaiyeri
{"title":"基于多路复用器的高容量自旋电子突触","authors":"Mahan Rezaei;Ermia Elahi;Arefe Amirany;Mohammad Hossein Moaiyeri","doi":"10.1109/LMAG.2024.3416092","DOIUrl":null,"url":null,"abstract":"In recent years, there have been significant advancements in the manufacturing of emerging technologies, especially in the areas of in-memory computing and neural networks, which are currently some of the most actively researched topics. With the increasing need to process complex tasks, the development of intelligent processors has become more crucial than ever. This letter advances a high-capacity spintronic synapse using magnetic tunnel junctions (MTJs) and carbon nanotube field-effect transistors (CNTFETs) to implement associative memory. The choice of MTJ devices is due to their remarkable features, including reliable reconfiguration and nonvolatility. Moreover, CNTFETs have overcome traditional complementary metal–oxide semiconductor limitations, such as the short-channel effect and suboptimal hole mobility. The design seeks to improve accuracy and memory capacity by increasing the number of weights. Simulation results indicate that the design offers a 19%–73% higher number of weights and a lower error rate than the state-of-the-art counterparts.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"15 ","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multiplexer-Based High-Capacity Spintronic Synapse\",\"authors\":\"Mahan Rezaei;Ermia Elahi;Arefe Amirany;Mohammad Hossein Moaiyeri\",\"doi\":\"10.1109/LMAG.2024.3416092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, there have been significant advancements in the manufacturing of emerging technologies, especially in the areas of in-memory computing and neural networks, which are currently some of the most actively researched topics. With the increasing need to process complex tasks, the development of intelligent processors has become more crucial than ever. This letter advances a high-capacity spintronic synapse using magnetic tunnel junctions (MTJs) and carbon nanotube field-effect transistors (CNTFETs) to implement associative memory. The choice of MTJ devices is due to their remarkable features, including reliable reconfiguration and nonvolatility. Moreover, CNTFETs have overcome traditional complementary metal–oxide semiconductor limitations, such as the short-channel effect and suboptimal hole mobility. The design seeks to improve accuracy and memory capacity by increasing the number of weights. Simulation results indicate that the design offers a 19%–73% higher number of weights and a lower error rate than the state-of-the-art counterparts.\",\"PeriodicalId\":13040,\"journal\":{\"name\":\"IEEE Magnetics Letters\",\"volume\":\"15 \",\"pages\":\"1-5\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Magnetics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10561586/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10561586/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,新兴技术的生产取得了重大进展,特别是在内存计算和神经网络领域,这些都是目前研究最为活跃的课题。随着处理复杂任务的需求与日俱增,智能处理器的开发变得比以往任何时候都更为重要。这封信利用磁隧道结(MTJ)和碳纳米管场效应晶体管(CNTFET)推进了大容量自旋电子突触,以实现关联记忆。之所以选择 MTJ 器件,是因为它们具有可靠的重新配置和非挥发性等显著特点。此外,CNTFET 克服了传统互补金属氧化物半导体的局限性,如短沟道效应和不理想的空穴迁移率。该设计旨在通过增加砝码数量来提高精度和内存容量。仿真结果表明,与最先进的同类产品相比,该设计的权重数增加了 19%-73% ,错误率更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multiplexer-Based High-Capacity Spintronic Synapse
In recent years, there have been significant advancements in the manufacturing of emerging technologies, especially in the areas of in-memory computing and neural networks, which are currently some of the most actively researched topics. With the increasing need to process complex tasks, the development of intelligent processors has become more crucial than ever. This letter advances a high-capacity spintronic synapse using magnetic tunnel junctions (MTJs) and carbon nanotube field-effect transistors (CNTFETs) to implement associative memory. The choice of MTJ devices is due to their remarkable features, including reliable reconfiguration and nonvolatility. Moreover, CNTFETs have overcome traditional complementary metal–oxide semiconductor limitations, such as the short-channel effect and suboptimal hole mobility. The design seeks to improve accuracy and memory capacity by increasing the number of weights. Simulation results indicate that the design offers a 19%–73% higher number of weights and a lower error rate than the state-of-the-art counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Magnetics Letters
IEEE Magnetics Letters PHYSICS, APPLIED-
CiteScore
2.40
自引率
0.00%
发文量
37
期刊介绍: IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest. IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信