pyC[式略]Ray:用于模拟再电离宇宙纪元的灵活且GPU加速的辐射传递框架

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
P. Hirling , M. Bianco , S.K. Giri , I.T. Iliev , G. Mellema , J.-P. Kneib
{"title":"pyC[式略]Ray:用于模拟再电离宇宙纪元的灵活且GPU加速的辐射传递框架","authors":"P. Hirling ,&nbsp;M. Bianco ,&nbsp;S.K. Giri ,&nbsp;I.T. Iliev ,&nbsp;G. Mellema ,&nbsp;J.-P. Kneib","doi":"10.1016/j.ascom.2024.100861","DOIUrl":null,"url":null,"abstract":"<div><p>Detailed modeling of the evolution of neutral hydrogen in the intergalactic medium during the Epoch of Reionization, <span><math><mrow><mn>5</mn><mo>≤</mo><mi>z</mi><mo>≤</mo><mn>20</mn></mrow></math></span>, is critical in interpreting the cosmological signals from current and upcoming 21-cm experiments such as the Low-Frequency Array (LOFAR) and the Square Kilometre Array (SKA). Numerical radiative transfer codes provide the most physically accurate models of the reionization process. However, they are computationally expensive as they must encompass enormous cosmological volumes while accurately capturing astrophysical processes occurring at small scales (<span><math><mrow><mo>≲</mo><mi>Mpc</mi></mrow></math></span>). Here, we present <span>pyC</span> <span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> <span>Ray</span>, an updated version of the massively parallel ray-tracing and chemistry code, <span>C</span> <span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> <span>-Ray</span>, which has been extensively employed in reionization simulations. The most time-consuming part of the code is calculating the hydrogen column density along the path of the ionizing photons. Here, we present the Accelerated Short-characteristics Octahedral ray-tracing (<span>ASORA</span>) method, a ray-tracing algorithm specifically designed to run on graphical processing units (GPUs). We include a modern <span>Python</span> interface, allowing easy and customized use of the code without compromising computational efficiency. We test <span>pyC</span> <span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> <span>Ray</span> on a series of standard ray-tracing tests and a complete cosmological simulation with volume size <span><math><msup><mrow><mrow><mo>(</mo><mn>349</mn><mspace></mspace><mi>Mpc</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>, mesh size of <span><math><mrow><mn>25</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> and approximately <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> sources. Compared to the original code, <span>pyC</span> <span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> <span>Ray</span> achieves the same results with negligible fractional differences, <span><math><mrow><mo>∼</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></math></span>, and a speedup factor of two orders of magnitude. Benchmark analysis shows that <span>ASORA</span> takes a few nanoseconds per source per voxel and scales linearly for an increasing number of sources and voxels within the ray-tracing radii.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"48 ","pages":"Article 100861"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pyC 2 Ray: A flexible and GPU-accelerated radiative transfer framework for simulating the cosmic epoch of reionization\",\"authors\":\"P. Hirling ,&nbsp;M. Bianco ,&nbsp;S.K. Giri ,&nbsp;I.T. Iliev ,&nbsp;G. Mellema ,&nbsp;J.-P. Kneib\",\"doi\":\"10.1016/j.ascom.2024.100861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Detailed modeling of the evolution of neutral hydrogen in the intergalactic medium during the Epoch of Reionization, <span><math><mrow><mn>5</mn><mo>≤</mo><mi>z</mi><mo>≤</mo><mn>20</mn></mrow></math></span>, is critical in interpreting the cosmological signals from current and upcoming 21-cm experiments such as the Low-Frequency Array (LOFAR) and the Square Kilometre Array (SKA). Numerical radiative transfer codes provide the most physically accurate models of the reionization process. However, they are computationally expensive as they must encompass enormous cosmological volumes while accurately capturing astrophysical processes occurring at small scales (<span><math><mrow><mo>≲</mo><mi>Mpc</mi></mrow></math></span>). Here, we present <span>pyC</span> <span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> <span>Ray</span>, an updated version of the massively parallel ray-tracing and chemistry code, <span>C</span> <span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> <span>-Ray</span>, which has been extensively employed in reionization simulations. The most time-consuming part of the code is calculating the hydrogen column density along the path of the ionizing photons. Here, we present the Accelerated Short-characteristics Octahedral ray-tracing (<span>ASORA</span>) method, a ray-tracing algorithm specifically designed to run on graphical processing units (GPUs). We include a modern <span>Python</span> interface, allowing easy and customized use of the code without compromising computational efficiency. We test <span>pyC</span> <span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> <span>Ray</span> on a series of standard ray-tracing tests and a complete cosmological simulation with volume size <span><math><msup><mrow><mrow><mo>(</mo><mn>349</mn><mspace></mspace><mi>Mpc</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>, mesh size of <span><math><mrow><mn>25</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> and approximately <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> sources. Compared to the original code, <span>pyC</span> <span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> <span>Ray</span> achieves the same results with negligible fractional differences, <span><math><mrow><mo>∼</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></math></span>, and a speedup factor of two orders of magnitude. Benchmark analysis shows that <span>ASORA</span> takes a few nanoseconds per source per voxel and scales linearly for an increasing number of sources and voxels within the ray-tracing radii.</p></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"48 \",\"pages\":\"Article 100861\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133724000763\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000763","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

对再电离纪元(Epoch of Reionization)期间星系际介质中的中性氢的演化进行详细建模,对于解释当前和即将进行的 21 厘米实验(如低频阵列(LOFAR)和平方公里阵列(SKA))发出的宇宙学信号至关重要。数值辐射传递代码提供了物理上最精确的再电离过程模型。然而,由于它们必须涵盖巨大的宇宙学体积,同时又要准确捕捉发生在小尺度上的天体物理过程,因此计算成本非常昂贵()。在此,我们介绍了大规模并行光线追踪和化学代码"Ⅳ"的更新版本,该代码已被广泛用于再电离模拟。该代码最耗时的部分是计算电离光子路径上的氢柱密度。在这里,我们介绍加速短特征八面体射线追踪()方法,这是一种专门设计用于在图形处理器(GPU)上运行的射线追踪算法。我们提供了一个现代化的界面,允许在不影响计算效率的情况下轻松定制使用代码。我们在一系列标准光线追踪测试和一个完整的宇宙学模拟中进行了测试,模拟的体积大小、网格大小和来源大致相同。与最初的代码相比,我们的计算速度提高了两个数量级。基准分析表明,每个源、每个体素只需几纳秒,并且随着光线追踪半径内源和体素数量的增加而线性扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
pyC 2 Ray: A flexible and GPU-accelerated radiative transfer framework for simulating the cosmic epoch of reionization

Detailed modeling of the evolution of neutral hydrogen in the intergalactic medium during the Epoch of Reionization, 5z20, is critical in interpreting the cosmological signals from current and upcoming 21-cm experiments such as the Low-Frequency Array (LOFAR) and the Square Kilometre Array (SKA). Numerical radiative transfer codes provide the most physically accurate models of the reionization process. However, they are computationally expensive as they must encompass enormous cosmological volumes while accurately capturing astrophysical processes occurring at small scales (Mpc). Here, we present pyC 2 Ray, an updated version of the massively parallel ray-tracing and chemistry code, C 2 -Ray, which has been extensively employed in reionization simulations. The most time-consuming part of the code is calculating the hydrogen column density along the path of the ionizing photons. Here, we present the Accelerated Short-characteristics Octahedral ray-tracing (ASORA) method, a ray-tracing algorithm specifically designed to run on graphical processing units (GPUs). We include a modern Python interface, allowing easy and customized use of the code without compromising computational efficiency. We test pyC 2 Ray on a series of standard ray-tracing tests and a complete cosmological simulation with volume size (349Mpc)3, mesh size of 2503 and approximately 106 sources. Compared to the original code, pyC 2 Ray achieves the same results with negligible fractional differences, 105, and a speedup factor of two orders of magnitude. Benchmark analysis shows that ASORA takes a few nanoseconds per source per voxel and scales linearly for an increasing number of sources and voxels within the ray-tracing radii.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信