Andre Dubovskiy;Troy Criss;Ahmed Sidi El Valli;Laura Rehm;Andrew D. Kent;Andrew Haas
{"title":"利用场可编程门阵列驱动磁隧道结生成一万亿真实随机比特","authors":"Andre Dubovskiy;Troy Criss;Ahmed Sidi El Valli;Laura Rehm;Andrew D. Kent;Andrew Haas","doi":"10.1109/LMAG.2024.3416091","DOIUrl":null,"url":null,"abstract":"Large quantities of random numbers are crucial in a wide range of applications. We have recently demonstrated that perpendicular nanopillar magnetic tunnel junctions (pMTJs) can produce true random bits when actuated with short pulses. However, our implementation used high-end and expensive electronics, such as a high-bandwidth arbitrary waveform generator and analog-to-digital converter, and was limited to relatively low data rates. Here, we significantly increase the speed of true random-number generation of our stochastic actuated pMTJs (SMART-pMTJs) using field-programmable gate arrays (FPGAs), demonstrating the generation of over \n<inline-formula><tex-math>${\\text{10}}^{\\text{12}}$</tex-math></inline-formula>\n bits at rates exceeding 10 Mb/s. The resulting bitstreams pass the NIST Statistical Test Suite for randomness with only one \n<sc>xor</small>\n operation. In addition to a hundred-fold reduction in the setup cost and a thousand-fold increase in bitrate, the advancement includes simplifying and optimizing random bit generation with a custom-designed analog daughterboard to interface an FPGA and SMART-pMTJ. The resulting setup further enables FPGA at-speed processing of MTJ data for stochastic modeling and cryptography.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10561576","citationCount":"0","resultStr":"{\"title\":\"One Trillion True Random Bits Generated With a Field-Programmable Gate Array Actuated Magnetic Tunnel Junction\",\"authors\":\"Andre Dubovskiy;Troy Criss;Ahmed Sidi El Valli;Laura Rehm;Andrew D. Kent;Andrew Haas\",\"doi\":\"10.1109/LMAG.2024.3416091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large quantities of random numbers are crucial in a wide range of applications. We have recently demonstrated that perpendicular nanopillar magnetic tunnel junctions (pMTJs) can produce true random bits when actuated with short pulses. However, our implementation used high-end and expensive electronics, such as a high-bandwidth arbitrary waveform generator and analog-to-digital converter, and was limited to relatively low data rates. Here, we significantly increase the speed of true random-number generation of our stochastic actuated pMTJs (SMART-pMTJs) using field-programmable gate arrays (FPGAs), demonstrating the generation of over \\n<inline-formula><tex-math>${\\\\text{10}}^{\\\\text{12}}$</tex-math></inline-formula>\\n bits at rates exceeding 10 Mb/s. The resulting bitstreams pass the NIST Statistical Test Suite for randomness with only one \\n<sc>xor</small>\\n operation. In addition to a hundred-fold reduction in the setup cost and a thousand-fold increase in bitrate, the advancement includes simplifying and optimizing random bit generation with a custom-designed analog daughterboard to interface an FPGA and SMART-pMTJ. The resulting setup further enables FPGA at-speed processing of MTJ data for stochastic modeling and cryptography.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10561576\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10561576/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10561576/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
One Trillion True Random Bits Generated With a Field-Programmable Gate Array Actuated Magnetic Tunnel Junction
Large quantities of random numbers are crucial in a wide range of applications. We have recently demonstrated that perpendicular nanopillar magnetic tunnel junctions (pMTJs) can produce true random bits when actuated with short pulses. However, our implementation used high-end and expensive electronics, such as a high-bandwidth arbitrary waveform generator and analog-to-digital converter, and was limited to relatively low data rates. Here, we significantly increase the speed of true random-number generation of our stochastic actuated pMTJs (SMART-pMTJs) using field-programmable gate arrays (FPGAs), demonstrating the generation of over
${\text{10}}^{\text{12}}$
bits at rates exceeding 10 Mb/s. The resulting bitstreams pass the NIST Statistical Test Suite for randomness with only one
xor
operation. In addition to a hundred-fold reduction in the setup cost and a thousand-fold increase in bitrate, the advancement includes simplifying and optimizing random bit generation with a custom-designed analog daughterboard to interface an FPGA and SMART-pMTJ. The resulting setup further enables FPGA at-speed processing of MTJ data for stochastic modeling and cryptography.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.