{"title":"用于通过叶片涂层加工的高效有机太阳能电池的通用空穴传输层","authors":"Zijian Li, Hui Huang, Xianghui Zeng, Baoshen Deng, Chengsheng Li, Chuanlin Gao, Guangye Zhang, Shunpu Li, Chen Xie","doi":"10.1016/j.orgel.2024.107104","DOIUrl":null,"url":null,"abstract":"<div><p>Doctor-blade coating technology is a roll-to-roll compatible high-throughput thin film fabrication route. In this work, doctor-blading was applied for fabricating organic solar cells (OSCs) using a polyoxometalates material phosphomolybdic acid (PMA) as a hole transport layer (HTL). Compared to PEDOT:PSS, PMA-based devices demonstrate lower trap-assisted recombination, higher hole mobility, prolonged charge carrier lifetime and faster charge collection. With PM6:Y6 as active layer, PMA-based device delivered a high power conversion efficiency (PCE) of 17.79 % with a boosted short-circuit current density (J<sub>SC</sub>) value of 28.08 mA/cm<sup>2</sup>, which is one of the best performances for PM6:Y6-based solar cells through doctor-blading process. In addition, the performance improvement was observed in both conventional and inverted structured devices with various donor: acceptor combinations. These results indicate the high universality of PMA for printable processing and its prospect in preparation of the industrial production of OSCs.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"133 ","pages":"Article 107104"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A universal hole transport layer for efficient organic solar cells processed by blade coating\",\"authors\":\"Zijian Li, Hui Huang, Xianghui Zeng, Baoshen Deng, Chengsheng Li, Chuanlin Gao, Guangye Zhang, Shunpu Li, Chen Xie\",\"doi\":\"10.1016/j.orgel.2024.107104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Doctor-blade coating technology is a roll-to-roll compatible high-throughput thin film fabrication route. In this work, doctor-blading was applied for fabricating organic solar cells (OSCs) using a polyoxometalates material phosphomolybdic acid (PMA) as a hole transport layer (HTL). Compared to PEDOT:PSS, PMA-based devices demonstrate lower trap-assisted recombination, higher hole mobility, prolonged charge carrier lifetime and faster charge collection. With PM6:Y6 as active layer, PMA-based device delivered a high power conversion efficiency (PCE) of 17.79 % with a boosted short-circuit current density (J<sub>SC</sub>) value of 28.08 mA/cm<sup>2</sup>, which is one of the best performances for PM6:Y6-based solar cells through doctor-blading process. In addition, the performance improvement was observed in both conventional and inverted structured devices with various donor: acceptor combinations. These results indicate the high universality of PMA for printable processing and its prospect in preparation of the industrial production of OSCs.</p></div>\",\"PeriodicalId\":399,\"journal\":{\"name\":\"Organic Electronics\",\"volume\":\"133 \",\"pages\":\"Article 107104\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566119924001150\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119924001150","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A universal hole transport layer for efficient organic solar cells processed by blade coating
Doctor-blade coating technology is a roll-to-roll compatible high-throughput thin film fabrication route. In this work, doctor-blading was applied for fabricating organic solar cells (OSCs) using a polyoxometalates material phosphomolybdic acid (PMA) as a hole transport layer (HTL). Compared to PEDOT:PSS, PMA-based devices demonstrate lower trap-assisted recombination, higher hole mobility, prolonged charge carrier lifetime and faster charge collection. With PM6:Y6 as active layer, PMA-based device delivered a high power conversion efficiency (PCE) of 17.79 % with a boosted short-circuit current density (JSC) value of 28.08 mA/cm2, which is one of the best performances for PM6:Y6-based solar cells through doctor-blading process. In addition, the performance improvement was observed in both conventional and inverted structured devices with various donor: acceptor combinations. These results indicate the high universality of PMA for printable processing and its prospect in preparation of the industrial production of OSCs.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.