M. Hasler , C. Hauser , K. Schindelwig , J. van Putten , S. Rohm , W. Nachbauer
{"title":"测量静止空气中运动物体的空气阻力","authors":"M. Hasler , C. Hauser , K. Schindelwig , J. van Putten , S. Rohm , W. Nachbauer","doi":"10.1016/j.jweia.2024.105842","DOIUrl":null,"url":null,"abstract":"<div><p>Aerodynamic drag in sports can be assessed using a multitude of methods such as wind tunnel tests, computational fluid dynamics simulations or field tests. All these methods are able to simulate specific situations in sports. The goal of this study was to describe a measurement system that assesses the aerodynamic properties of textile covered cylinders in a special situation: contrary to wind tunnel measurements, fabric-covered samples were moved in stationary air over a distance of up to 20 m at speeds from 5 to 20 ms<sup>−1</sup>. The measurement system showed a precision better than 2%. The course of the drag coefficient over speed was very similar to comparison measurements in a wind tunnel, but the drag coefficient was lower by up to 18% with respect to the wind tunnel and the speed at which the drag crisis occurred in the wind tunnel was higher by up to 10 ms<sup>−1</sup>. Reasons could be a higher turbulence intensity in our measurement setup or, more likely, that the motion of the sample was too short to build up a steady air flow as in wind tunnels. The limited duration of the experiment, however, maybe brings it closer to the reality in situations in sports where the athlete's posture and/or direction of motion change frequently or for some aspects of sports ball aerodynamics.</p></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"253 ","pages":"Article 105842"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic drag measurement of a moving object in stationary air\",\"authors\":\"M. Hasler , C. Hauser , K. Schindelwig , J. van Putten , S. Rohm , W. Nachbauer\",\"doi\":\"10.1016/j.jweia.2024.105842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aerodynamic drag in sports can be assessed using a multitude of methods such as wind tunnel tests, computational fluid dynamics simulations or field tests. All these methods are able to simulate specific situations in sports. The goal of this study was to describe a measurement system that assesses the aerodynamic properties of textile covered cylinders in a special situation: contrary to wind tunnel measurements, fabric-covered samples were moved in stationary air over a distance of up to 20 m at speeds from 5 to 20 ms<sup>−1</sup>. The measurement system showed a precision better than 2%. The course of the drag coefficient over speed was very similar to comparison measurements in a wind tunnel, but the drag coefficient was lower by up to 18% with respect to the wind tunnel and the speed at which the drag crisis occurred in the wind tunnel was higher by up to 10 ms<sup>−1</sup>. Reasons could be a higher turbulence intensity in our measurement setup or, more likely, that the motion of the sample was too short to build up a steady air flow as in wind tunnels. The limited duration of the experiment, however, maybe brings it closer to the reality in situations in sports where the athlete's posture and/or direction of motion change frequently or for some aspects of sports ball aerodynamics.</p></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"253 \",\"pages\":\"Article 105842\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167610524002058\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524002058","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Aerodynamic drag measurement of a moving object in stationary air
Aerodynamic drag in sports can be assessed using a multitude of methods such as wind tunnel tests, computational fluid dynamics simulations or field tests. All these methods are able to simulate specific situations in sports. The goal of this study was to describe a measurement system that assesses the aerodynamic properties of textile covered cylinders in a special situation: contrary to wind tunnel measurements, fabric-covered samples were moved in stationary air over a distance of up to 20 m at speeds from 5 to 20 ms−1. The measurement system showed a precision better than 2%. The course of the drag coefficient over speed was very similar to comparison measurements in a wind tunnel, but the drag coefficient was lower by up to 18% with respect to the wind tunnel and the speed at which the drag crisis occurred in the wind tunnel was higher by up to 10 ms−1. Reasons could be a higher turbulence intensity in our measurement setup or, more likely, that the motion of the sample was too short to build up a steady air flow as in wind tunnels. The limited duration of the experiment, however, maybe brings it closer to the reality in situations in sports where the athlete's posture and/or direction of motion change frequently or for some aspects of sports ball aerodynamics.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.