多相系统的机器学习和物理驱动建模与仿真

IF 3.6 2区 工程技术 Q1 MECHANICS
Nausheen Basha , Rossella Arcucci , Panagiota Angeli , Charitos Anastasiou , Thomas Abadie , César Quilodrán Casas , Jianhua Chen , Sibo Cheng , Loïc Chagot , Federico Galvanin , Claire E. Heaney , Fria Hossein , Jinwei Hu , Nina Kovalchuk , Maria Kalli , Lyes Kahouadji , Morgan Kerhouant , Alessio Lavino , Fuyue Liang , Konstantia Nathanael , Omar K Matar
{"title":"多相系统的机器学习和物理驱动建模与仿真","authors":"Nausheen Basha ,&nbsp;Rossella Arcucci ,&nbsp;Panagiota Angeli ,&nbsp;Charitos Anastasiou ,&nbsp;Thomas Abadie ,&nbsp;César Quilodrán Casas ,&nbsp;Jianhua Chen ,&nbsp;Sibo Cheng ,&nbsp;Loïc Chagot ,&nbsp;Federico Galvanin ,&nbsp;Claire E. Heaney ,&nbsp;Fria Hossein ,&nbsp;Jinwei Hu ,&nbsp;Nina Kovalchuk ,&nbsp;Maria Kalli ,&nbsp;Lyes Kahouadji ,&nbsp;Morgan Kerhouant ,&nbsp;Alessio Lavino ,&nbsp;Fuyue Liang ,&nbsp;Konstantia Nathanael ,&nbsp;Omar K Matar","doi":"10.1016/j.ijmultiphaseflow.2024.104936","DOIUrl":null,"url":null,"abstract":"<div><p>We highlight the work of a multi-university collaborative programme, PREMIERE (PREdictive Modelling with QuantIfication of UncERtainty for MultiphasE Systems), which is at the intersection of multi-physics and machine learning, aiming to enhance predictive capabilities in complex multiphase flow systems across diverse length and time scales. Our contributions encompass a variety of approaches, including the Design of Experiments for nanoparticle synthesis optimisation, Generalised Latent Assimilation models for drop coalescence prediction, Bayesian regularised artificial neural networks, eXtreme Gradient Boosting for microdroplet formation prediction, and a sub-sampling based adversarial neural network for predicting slug flow behaviour in two-phase pipe flows. Additionally, we introduce a generalised latent assimilation technique, Long Short-Term Memory networks for sequence forecasting mixing performance in stirred and static mixers, active learning via Bayesian optimisation to recover coalescence model parameters for high current density electrolysers, Gaussian process regression for drop size distribution predictions for sprays, and acoustic emission signal inversion using gradient boosting machines to characterise particle size distribution in fluidised beds. We also offer perspectives on the development of a shape optimisation framework that leverages the use of a multi-fidelity multiphase emulator. The results presented have applications in chemical synthesis, microfluidics, product manufacturing, and green hydrogen generation.</p></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"179 ","pages":"Article 104936"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301932224002131/pdfft?md5=cbce2dbd44aadcfced02c63fe2b994c8&pid=1-s2.0-S0301932224002131-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning and physics-driven modelling and simulation of multiphase systems\",\"authors\":\"Nausheen Basha ,&nbsp;Rossella Arcucci ,&nbsp;Panagiota Angeli ,&nbsp;Charitos Anastasiou ,&nbsp;Thomas Abadie ,&nbsp;César Quilodrán Casas ,&nbsp;Jianhua Chen ,&nbsp;Sibo Cheng ,&nbsp;Loïc Chagot ,&nbsp;Federico Galvanin ,&nbsp;Claire E. Heaney ,&nbsp;Fria Hossein ,&nbsp;Jinwei Hu ,&nbsp;Nina Kovalchuk ,&nbsp;Maria Kalli ,&nbsp;Lyes Kahouadji ,&nbsp;Morgan Kerhouant ,&nbsp;Alessio Lavino ,&nbsp;Fuyue Liang ,&nbsp;Konstantia Nathanael ,&nbsp;Omar K Matar\",\"doi\":\"10.1016/j.ijmultiphaseflow.2024.104936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We highlight the work of a multi-university collaborative programme, PREMIERE (PREdictive Modelling with QuantIfication of UncERtainty for MultiphasE Systems), which is at the intersection of multi-physics and machine learning, aiming to enhance predictive capabilities in complex multiphase flow systems across diverse length and time scales. Our contributions encompass a variety of approaches, including the Design of Experiments for nanoparticle synthesis optimisation, Generalised Latent Assimilation models for drop coalescence prediction, Bayesian regularised artificial neural networks, eXtreme Gradient Boosting for microdroplet formation prediction, and a sub-sampling based adversarial neural network for predicting slug flow behaviour in two-phase pipe flows. Additionally, we introduce a generalised latent assimilation technique, Long Short-Term Memory networks for sequence forecasting mixing performance in stirred and static mixers, active learning via Bayesian optimisation to recover coalescence model parameters for high current density electrolysers, Gaussian process regression for drop size distribution predictions for sprays, and acoustic emission signal inversion using gradient boosting machines to characterise particle size distribution in fluidised beds. We also offer perspectives on the development of a shape optimisation framework that leverages the use of a multi-fidelity multiphase emulator. The results presented have applications in chemical synthesis, microfluidics, product manufacturing, and green hydrogen generation.</p></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"179 \",\"pages\":\"Article 104936\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0301932224002131/pdfft?md5=cbce2dbd44aadcfced02c63fe2b994c8&pid=1-s2.0-S0301932224002131-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932224002131\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224002131","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

我们重点介绍一项多所大学合作计划 PREMIERE(多相流系统不确定性量化预测建模)的工作,该计划处于多物理场和机器学习的交叉点,旨在提高不同长度和时间尺度的复杂多相流系统的预测能力。我们的研究成果涵盖多种方法,包括用于纳米粒子合成优化的实验设计(Design of Experiments)、用于液滴凝聚预测的广义同化模型(Generalised Latent Assimilation models)、贝叶斯正则化人工神经网络(Bayesian regularised artificial neural networks)、用于微液滴形成预测的梯度提升(eXtreme Gradient Boosting),以及用于预测两相管道流中蛞蝓流动行为的基于子采样的对抗神经网络(adversarial neural network)。此外,我们还介绍了广义潜势同化技术、用于序列预测搅拌式和静态混合器混合性能的长短期记忆网络、通过贝叶斯优化恢复高电流密度电解槽凝聚模型参数的主动学习、用于预测喷雾液滴粒度分布的高斯过程回归,以及使用梯度提升机反演声发射信号以描述流化床中的粒度分布特征。我们还对利用多保真度多相模拟器开发形状优化框架提出了展望。所展示的成果可应用于化学合成、微流体、产品制造和绿色制氢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning and physics-driven modelling and simulation of multiphase systems

Machine learning and physics-driven modelling and simulation of multiphase systems

We highlight the work of a multi-university collaborative programme, PREMIERE (PREdictive Modelling with QuantIfication of UncERtainty for MultiphasE Systems), which is at the intersection of multi-physics and machine learning, aiming to enhance predictive capabilities in complex multiphase flow systems across diverse length and time scales. Our contributions encompass a variety of approaches, including the Design of Experiments for nanoparticle synthesis optimisation, Generalised Latent Assimilation models for drop coalescence prediction, Bayesian regularised artificial neural networks, eXtreme Gradient Boosting for microdroplet formation prediction, and a sub-sampling based adversarial neural network for predicting slug flow behaviour in two-phase pipe flows. Additionally, we introduce a generalised latent assimilation technique, Long Short-Term Memory networks for sequence forecasting mixing performance in stirred and static mixers, active learning via Bayesian optimisation to recover coalescence model parameters for high current density electrolysers, Gaussian process regression for drop size distribution predictions for sprays, and acoustic emission signal inversion using gradient boosting machines to characterise particle size distribution in fluidised beds. We also offer perspectives on the development of a shape optimisation framework that leverages the use of a multi-fidelity multiphase emulator. The results presented have applications in chemical synthesis, microfluidics, product manufacturing, and green hydrogen generation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信