增强灵巧的手部控制:机器学习集成的分布式架构

Baoxu Tu, Yuanfei Zhang, Wangyang Li, Fenglei Ni, Minghe Jin
{"title":"增强灵巧的手部控制:机器学习集成的分布式架构","authors":"Baoxu Tu, Yuanfei Zhang, Wangyang Li, Fenglei Ni, Minghe Jin","doi":"10.1108/ir-04-2024-0177","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The aim of this paper is to enhance the control performance of dexterous hands, enabling them to handle the high data flow from multiple sensors and to meet the deployment requirements of deep learning methods on dexterous hands.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>A distributed control architecture was designed, comprising embedded motion control subsystems and a host control subsystem built on ROS. The design of embedded controller state machines and clock synchronization algorithms ensured the stable operation of the entire distributed control system.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Experiments demonstrate that the entire system can operate stably at 1KHz. Additionally, the host can accomplish learning-based estimates of contact position and force.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This distributed architecture provides foundational support for the large-scale application of machine learning algorithms on dexterous hands. Dexterity hands utilizing this architecture can be easily integrated with robotic arms.</p><!--/ Abstract__block -->","PeriodicalId":501389,"journal":{"name":"Industrial Robot","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing dexterous hand control: a distributed architecture for machine learning integration\",\"authors\":\"Baoxu Tu, Yuanfei Zhang, Wangyang Li, Fenglei Ni, Minghe Jin\",\"doi\":\"10.1108/ir-04-2024-0177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The aim of this paper is to enhance the control performance of dexterous hands, enabling them to handle the high data flow from multiple sensors and to meet the deployment requirements of deep learning methods on dexterous hands.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>A distributed control architecture was designed, comprising embedded motion control subsystems and a host control subsystem built on ROS. The design of embedded controller state machines and clock synchronization algorithms ensured the stable operation of the entire distributed control system.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>Experiments demonstrate that the entire system can operate stably at 1KHz. Additionally, the host can accomplish learning-based estimates of contact position and force.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This distributed architecture provides foundational support for the large-scale application of machine learning algorithms on dexterous hands. Dexterity hands utilizing this architecture can be easily integrated with robotic arms.</p><!--/ Abstract__block -->\",\"PeriodicalId\":501389,\"journal\":{\"name\":\"Industrial Robot\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-04-2024-0177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ir-04-2024-0177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的本文旨在增强灵巧双手的控制性能,使其能够处理来自多个传感器的高数据流,并满足深度学习方法在灵巧双手上的部署要求。设计/方法/途径设计了一种分布式控制架构,包括嵌入式运动控制子系统和基于 ROS 构建的主机控制子系统。嵌入式控制器状态机和时钟同步算法的设计确保了整个分布式控制系统的稳定运行。实验结果实验证明,整个系统可以在 1KHz 的频率下稳定运行。此外,主机还能完成基于学习的接触位置和力的估计。原创性/价值这种分布式架构为机器学习算法在灵巧双手上的大规模应用提供了基础支持。采用这种架构的灵巧手可以很容易地与机械臂集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing dexterous hand control: a distributed architecture for machine learning integration

Purpose

The aim of this paper is to enhance the control performance of dexterous hands, enabling them to handle the high data flow from multiple sensors and to meet the deployment requirements of deep learning methods on dexterous hands.

Design/methodology/approach

A distributed control architecture was designed, comprising embedded motion control subsystems and a host control subsystem built on ROS. The design of embedded controller state machines and clock synchronization algorithms ensured the stable operation of the entire distributed control system.

Findings

Experiments demonstrate that the entire system can operate stably at 1KHz. Additionally, the host can accomplish learning-based estimates of contact position and force.

Originality/value

This distributed architecture provides foundational support for the large-scale application of machine learning algorithms on dexterous hands. Dexterity hands utilizing this architecture can be easily integrated with robotic arms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信