Haitham Y. Adarbah , Mehdi Sookhak , Mohammed Atiquzzaman
{"title":"使用 BIRCH 算法的基于数字孪生的交通灯管理系统","authors":"Haitham Y. Adarbah , Mehdi Sookhak , Mohammed Atiquzzaman","doi":"10.1016/j.adhoc.2024.103613","DOIUrl":null,"url":null,"abstract":"<div><p>Urban transportation networks are vital for the economic and environmental well-being of cities and they are faced with the integration of Human-Driven Vehicles (HVs) and Connected and Autonomous Vehicles (CAVs) challenge. Most of the traditional traffic management systems fail to effectively manage the dynamic and complex flows of mixed traffic, mainly because of large computational requirements and the restrictions that control models of traffic lights directly based on extensive and continuous training data. Most of the times, the operational flexibility of CAVs is severely compromised for the safety of HVs, or CAVs are given high priority without taking into account the efficiency of HVs leading to lower performance, especially at low CAV penetration rates. On the other hand, the existing adaptive traffic light approaches were usually partial and could not adapt to the real-time behaviors of the traffic system. Some systems operate with inflexible temporal control plans that cannot react to variations in traffic flow or use adaptive control strategies that are based on a limited set of static traffic conditions. This paper presents a novel traffic light control approach utilizing the BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) clustering algorithm combined with digital twins for a more adaptive and efficient system. The BIRCH is effective in processing large datasets because it clusters data points incrementally and dynamically into a small set of representatives. The suggested method does not only enable better simulation and prediction of traffic patterns but also makes possible the real-time adaptive control of traffic signals at signalized intersections. It also improves traffic flow, reduces congestion, and minimizes vehicle idling time by adjusting the green and red light durations dynamically based on both real-time and historical traffic data. This approach is assessed under different traffic intensities, which include low, moderate, and high, while efficiency, fuel consumption, and the number of stops are being compared with the traditional and the existing adaptive traffic management systems.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"164 ","pages":"Article 103613"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A digital twin-based traffic light management system using BIRCH algorithm\",\"authors\":\"Haitham Y. Adarbah , Mehdi Sookhak , Mohammed Atiquzzaman\",\"doi\":\"10.1016/j.adhoc.2024.103613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Urban transportation networks are vital for the economic and environmental well-being of cities and they are faced with the integration of Human-Driven Vehicles (HVs) and Connected and Autonomous Vehicles (CAVs) challenge. Most of the traditional traffic management systems fail to effectively manage the dynamic and complex flows of mixed traffic, mainly because of large computational requirements and the restrictions that control models of traffic lights directly based on extensive and continuous training data. Most of the times, the operational flexibility of CAVs is severely compromised for the safety of HVs, or CAVs are given high priority without taking into account the efficiency of HVs leading to lower performance, especially at low CAV penetration rates. On the other hand, the existing adaptive traffic light approaches were usually partial and could not adapt to the real-time behaviors of the traffic system. Some systems operate with inflexible temporal control plans that cannot react to variations in traffic flow or use adaptive control strategies that are based on a limited set of static traffic conditions. This paper presents a novel traffic light control approach utilizing the BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) clustering algorithm combined with digital twins for a more adaptive and efficient system. The BIRCH is effective in processing large datasets because it clusters data points incrementally and dynamically into a small set of representatives. The suggested method does not only enable better simulation and prediction of traffic patterns but also makes possible the real-time adaptive control of traffic signals at signalized intersections. It also improves traffic flow, reduces congestion, and minimizes vehicle idling time by adjusting the green and red light durations dynamically based on both real-time and historical traffic data. This approach is assessed under different traffic intensities, which include low, moderate, and high, while efficiency, fuel consumption, and the number of stops are being compared with the traditional and the existing adaptive traffic management systems.</p></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":\"164 \",\"pages\":\"Article 103613\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870524002245\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002245","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A digital twin-based traffic light management system using BIRCH algorithm
Urban transportation networks are vital for the economic and environmental well-being of cities and they are faced with the integration of Human-Driven Vehicles (HVs) and Connected and Autonomous Vehicles (CAVs) challenge. Most of the traditional traffic management systems fail to effectively manage the dynamic and complex flows of mixed traffic, mainly because of large computational requirements and the restrictions that control models of traffic lights directly based on extensive and continuous training data. Most of the times, the operational flexibility of CAVs is severely compromised for the safety of HVs, or CAVs are given high priority without taking into account the efficiency of HVs leading to lower performance, especially at low CAV penetration rates. On the other hand, the existing adaptive traffic light approaches were usually partial and could not adapt to the real-time behaviors of the traffic system. Some systems operate with inflexible temporal control plans that cannot react to variations in traffic flow or use adaptive control strategies that are based on a limited set of static traffic conditions. This paper presents a novel traffic light control approach utilizing the BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) clustering algorithm combined with digital twins for a more adaptive and efficient system. The BIRCH is effective in processing large datasets because it clusters data points incrementally and dynamically into a small set of representatives. The suggested method does not only enable better simulation and prediction of traffic patterns but also makes possible the real-time adaptive control of traffic signals at signalized intersections. It also improves traffic flow, reduces congestion, and minimizes vehicle idling time by adjusting the green and red light durations dynamically based on both real-time and historical traffic data. This approach is assessed under different traffic intensities, which include low, moderate, and high, while efficiency, fuel consumption, and the number of stops are being compared with the traditional and the existing adaptive traffic management systems.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.