用于生物医学检测的微针技术进展

IF 5.7 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Xinmei Zhang, Yuemin Wang, Xinyu He, Yan Yang, Xingyu Chen and Jianshu Li
{"title":"用于生物医学检测的微针技术进展","authors":"Xinmei Zhang, Yuemin Wang, Xinyu He, Yan Yang, Xingyu Chen and Jianshu Li","doi":"10.1039/D4BM00794H","DOIUrl":null,"url":null,"abstract":"<p >Microneedles have recently emerged as a groundbreaking technology in the field of biomedical detection. Notable for their small size and ability to penetrate the superficial layers of the skin, microneedles provide an innovative platform for localized and real-time detection. This review explores the integration of various detection methods with microneedle technology, focusing particularly on its applications in biomedical contexts. First, the common detection methods, such as colorimetric, electrochemical, spectrometric, and fluorescence methods, combined with microneedle technology, are summarized. Then we showcase exemplary uses of microneedle technology in biomedical detection, including the monitoring of blood glucose levels, evaluating infection statuses in skin wounds, facilitating point-of-care testing, and identifying biomarkers in the interstitial fluid of the skin. Microneedle-based detection, with its painless, minimally invasive, and biocompatible approach, holds significant promise for enhancing biological assays. Finally, the review concludes by assessing the future potential and challenges of microneedle detection technology, underscoring its transformative capacity to advance personalized medicine and revolutionize healthcare practices.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 20","pages":" 5134-5149"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in microneedle technology for biomedical detection\",\"authors\":\"Xinmei Zhang, Yuemin Wang, Xinyu He, Yan Yang, Xingyu Chen and Jianshu Li\",\"doi\":\"10.1039/D4BM00794H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microneedles have recently emerged as a groundbreaking technology in the field of biomedical detection. Notable for their small size and ability to penetrate the superficial layers of the skin, microneedles provide an innovative platform for localized and real-time detection. This review explores the integration of various detection methods with microneedle technology, focusing particularly on its applications in biomedical contexts. First, the common detection methods, such as colorimetric, electrochemical, spectrometric, and fluorescence methods, combined with microneedle technology, are summarized. Then we showcase exemplary uses of microneedle technology in biomedical detection, including the monitoring of blood glucose levels, evaluating infection statuses in skin wounds, facilitating point-of-care testing, and identifying biomarkers in the interstitial fluid of the skin. Microneedle-based detection, with its painless, minimally invasive, and biocompatible approach, holds significant promise for enhancing biological assays. Finally, the review concludes by assessing the future potential and challenges of microneedle detection technology, underscoring its transformative capacity to advance personalized medicine and revolutionize healthcare practices.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" 20\",\"pages\":\" 5134-5149\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/bm/d4bm00794h\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/bm/d4bm00794h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

最近,微针已成为生物医学检测领域的一项突破性技术。微针体积小,能够穿透皮肤表层,为局部和实时检测提供了一个创新平台。本综述探讨了各种检测方法与微针技术的结合,尤其侧重于微针技术在生物医学领域的应用。首先,总结了与微针技术相结合的常用检测方法,如比色法、电化学法、光谱法、荧光法等。然后,我们展示了微针技术在生物医学检测中的示例应用,包括监测血糖水平、评估皮肤伤口感染状况、促进护理点检测以及识别皮肤间质中的生物标记物。微针检测具有无痛、微创和生物相容性好的特点,在加强生物检测方面大有可为。最后,本综述评估了微针检测技术的未来潜力和挑战,强调了微针检测技术在推进个性化医疗和革新医疗实践方面的变革能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advances in microneedle technology for biomedical detection

Advances in microneedle technology for biomedical detection

Microneedles have recently emerged as a groundbreaking technology in the field of biomedical detection. Notable for their small size and ability to penetrate the superficial layers of the skin, microneedles provide an innovative platform for localized and real-time detection. This review explores the integration of various detection methods with microneedle technology, focusing particularly on its applications in biomedical contexts. First, the common detection methods, such as colorimetric, electrochemical, spectrometric, and fluorescence methods, combined with microneedle technology, are summarized. Then we showcase exemplary uses of microneedle technology in biomedical detection, including the monitoring of blood glucose levels, evaluating infection statuses in skin wounds, facilitating point-of-care testing, and identifying biomarkers in the interstitial fluid of the skin. Microneedle-based detection, with its painless, minimally invasive, and biocompatible approach, holds significant promise for enhancing biological assays. Finally, the review concludes by assessing the future potential and challenges of microneedle detection technology, underscoring its transformative capacity to advance personalized medicine and revolutionize healthcare practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信