关于六价半弧透二面体

Pub Date : 2024-07-25 DOI:10.1016/j.disc.2024.114180
Mi-Mi Zhang
{"title":"关于六价半弧透二面体","authors":"Mi-Mi Zhang","doi":"10.1016/j.disc.2024.114180","DOIUrl":null,"url":null,"abstract":"<div><p>A graph is <em>half-arc-transitive</em> if its full automorphism group acts transitively on its vertex set and edge set, but not arc set. A half-arc-transitive graph is <em>half-arc-regular</em> if its full automorphism group acts regularly on its edges. A graph is said to be a <em>bi-Cayley graph</em> over a group <em>H</em> if it admits <em>H</em> as a semiregular automorphism group with two vertex-orbits. A bi-Cayley graph over a dihedral group is called <em>bi-dihedrant</em>. In this paper, it is shown that the smallest valency of half-arc-transitive bi-dihendrants is 6, and then a classification is given of connected half-arc-regular bi-dihedrants of valency 6. This work together with the result in <span><span>[8, Theorem 6.7]</span></span> completes the classification of edge-regular bi-dihedrants of valency 6.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On hexavalent half-arc-transitive bi-dihedrants\",\"authors\":\"Mi-Mi Zhang\",\"doi\":\"10.1016/j.disc.2024.114180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A graph is <em>half-arc-transitive</em> if its full automorphism group acts transitively on its vertex set and edge set, but not arc set. A half-arc-transitive graph is <em>half-arc-regular</em> if its full automorphism group acts regularly on its edges. A graph is said to be a <em>bi-Cayley graph</em> over a group <em>H</em> if it admits <em>H</em> as a semiregular automorphism group with two vertex-orbits. A bi-Cayley graph over a dihedral group is called <em>bi-dihedrant</em>. In this paper, it is shown that the smallest valency of half-arc-transitive bi-dihendrants is 6, and then a classification is given of connected half-arc-regular bi-dihedrants of valency 6. This work together with the result in <span><span>[8, Theorem 6.7]</span></span> completes the classification of edge-regular bi-dihedrants of valency 6.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X2400311X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2400311X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果一个图形的全自形群对其顶点集和边集起传递作用,但对弧集不起传递作用,那么该图形就是半弧传递图形。如果一个图形的全自形群有规律地作用于它的边,那么它就是半弧遍历图形。如果一个图允许有两个顶点-边的半圆自变群,则该图被称为 "在群上的图"。二面群上的双凯利图称为 。本文证明了半弧形双二面体的最小价数是 6,然后给出了价数为 6 的连通半弧形规则双二面体的分类。这项工作与本文中的结果共同完成了价数为 6 的边规则二面体的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On hexavalent half-arc-transitive bi-dihedrants

A graph is half-arc-transitive if its full automorphism group acts transitively on its vertex set and edge set, but not arc set. A half-arc-transitive graph is half-arc-regular if its full automorphism group acts regularly on its edges. A graph is said to be a bi-Cayley graph over a group H if it admits H as a semiregular automorphism group with two vertex-orbits. A bi-Cayley graph over a dihedral group is called bi-dihedrant. In this paper, it is shown that the smallest valency of half-arc-transitive bi-dihendrants is 6, and then a classification is given of connected half-arc-regular bi-dihedrants of valency 6. This work together with the result in [8, Theorem 6.7] completes the classification of edge-regular bi-dihedrants of valency 6.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信