使用带有音高预测功能的帧自回归伽玛(FARGAN)进行超低复杂度语音合成

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jean-Marc Valin;Ahmed Mustafa;Jan Büthe
{"title":"使用带有音高预测功能的帧自回归伽玛(FARGAN)进行超低复杂度语音合成","authors":"Jean-Marc Valin;Ahmed Mustafa;Jan Büthe","doi":"10.1109/LSP.2024.3440956","DOIUrl":null,"url":null,"abstract":"Neural vocoders are now being used in a wide range of speech processing applications. In many of those applications, the vocoder can be the most complex component, so finding lower complexity algorithms can lead to significant practical benefits. In this work, we propose FARGAN, an autoregressive vocoder that takes advantage of long-term pitch prediction to synthesize high-quality speech in small subframes, without the need for teacher-forcing. Experimental results show that the proposed 600 MFLOPS FARGAN vocoder can achieve both higher quality and lower complexity than existing low-complexity vocoders. The quality even matches that of existing higher-complexity vocoders.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2115-2119"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Very Low Complexity Speech Synthesis Using Framewise Autoregressive GAN (FARGAN) With Pitch Prediction\",\"authors\":\"Jean-Marc Valin;Ahmed Mustafa;Jan Büthe\",\"doi\":\"10.1109/LSP.2024.3440956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural vocoders are now being used in a wide range of speech processing applications. In many of those applications, the vocoder can be the most complex component, so finding lower complexity algorithms can lead to significant practical benefits. In this work, we propose FARGAN, an autoregressive vocoder that takes advantage of long-term pitch prediction to synthesize high-quality speech in small subframes, without the need for teacher-forcing. Experimental results show that the proposed 600 MFLOPS FARGAN vocoder can achieve both higher quality and lower complexity than existing low-complexity vocoders. The quality even matches that of existing higher-complexity vocoders.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"31 \",\"pages\":\"2115-2119\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10632624/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10632624/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

神经声码器现已广泛应用于语音处理领域。在许多这些应用中,声码器可能是最复杂的组件,因此找到复杂度较低的算法可以带来显著的实际效益。在这项工作中,我们提出了一种自回归声码器 FARGAN,它利用长期音高预测的优势,在较小的子帧中合成高质量语音,而无需教师强迫。实验结果表明,与现有的低复杂度声码器相比,所提出的 600 MFLOPS FARGAN 声码器能达到更高的质量和更低的复杂度。其质量甚至可以与现有的高复杂度声码器相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Very Low Complexity Speech Synthesis Using Framewise Autoregressive GAN (FARGAN) With Pitch Prediction
Neural vocoders are now being used in a wide range of speech processing applications. In many of those applications, the vocoder can be the most complex component, so finding lower complexity algorithms can lead to significant practical benefits. In this work, we propose FARGAN, an autoregressive vocoder that takes advantage of long-term pitch prediction to synthesize high-quality speech in small subframes, without the need for teacher-forcing. Experimental results show that the proposed 600 MFLOPS FARGAN vocoder can achieve both higher quality and lower complexity than existing low-complexity vocoders. The quality even matches that of existing higher-complexity vocoders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信