{"title":"论小属曲面中 1- 嵌入图的受限匹配扩展","authors":"Jiangyue Zhang, Yan Wu, Heping Zhang","doi":"10.1016/j.disc.2024.114172","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>G</em> be a connected graph with at least <span><math><mn>2</mn><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> vertices that contains a perfect matching. Then <em>G</em> is <span><math><mi>E</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> if for each pair of disjoint matchings <span><math><mi>M</mi><mo>,</mo><mi>N</mi><mo>⊆</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of size <em>m</em> and <em>n</em>, respectively, there exists a perfect matching <em>F</em> in <em>G</em> such that <span><math><mi>M</mi><mo>⊆</mo><mi>F</mi></math></span> and <span><math><mi>F</mi><mo>∩</mo><mi>N</mi><mo>=</mo><mo>∅</mo></math></span>. A graph <em>G</em> is <em>1-embeddable</em> in a surface Σ if <em>G</em> can be drawn in Σ so that every edge of <em>G</em> crosses at most one other edge at a point. R.E.L. Aldred and M.D. Plummer <span><span>[1]</span></span>, <span><span>[2]</span></span> investigated the properties <span><math><mi>E</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> for graphs embedded in the plane, torus, projective plane and Klein bottle. In this paper, we study the property <span><math><mi>E</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> for 1-embeddable graphs in surfaces with small genus. It is shown that no 1-embeddable graph in the plane or projective plane is <span><math><mi>E</mi><mo>(</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and no 1-embeddable graph in the torus or Klein bottle is <span><math><mi>E</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. As corollaries, no 1-embeddable graph in the plane or projective plane is 5-extendable and no 1-embeddable graph in the torus or Klein bottle is 6-extendable. Some examples show that such results are best possible.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"347 11","pages":"Article 114172"},"PeriodicalIF":0.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On restricted matching extension of 1-embeddable graphs in surfaces with small genus\",\"authors\":\"Jiangyue Zhang, Yan Wu, Heping Zhang\",\"doi\":\"10.1016/j.disc.2024.114172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>G</em> be a connected graph with at least <span><math><mn>2</mn><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> vertices that contains a perfect matching. Then <em>G</em> is <span><math><mi>E</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> if for each pair of disjoint matchings <span><math><mi>M</mi><mo>,</mo><mi>N</mi><mo>⊆</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of size <em>m</em> and <em>n</em>, respectively, there exists a perfect matching <em>F</em> in <em>G</em> such that <span><math><mi>M</mi><mo>⊆</mo><mi>F</mi></math></span> and <span><math><mi>F</mi><mo>∩</mo><mi>N</mi><mo>=</mo><mo>∅</mo></math></span>. A graph <em>G</em> is <em>1-embeddable</em> in a surface Σ if <em>G</em> can be drawn in Σ so that every edge of <em>G</em> crosses at most one other edge at a point. R.E.L. Aldred and M.D. Plummer <span><span>[1]</span></span>, <span><span>[2]</span></span> investigated the properties <span><math><mi>E</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> for graphs embedded in the plane, torus, projective plane and Klein bottle. In this paper, we study the property <span><math><mi>E</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> for 1-embeddable graphs in surfaces with small genus. It is shown that no 1-embeddable graph in the plane or projective plane is <span><math><mi>E</mi><mo>(</mo><mn>4</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and no 1-embeddable graph in the torus or Klein bottle is <span><math><mi>E</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. As corollaries, no 1-embeddable graph in the plane or projective plane is 5-extendable and no 1-embeddable graph in the torus or Klein bottle is 6-extendable. Some examples show that such results are best possible.</p></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"347 11\",\"pages\":\"Article 114172\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24003030\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003030","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On restricted matching extension of 1-embeddable graphs in surfaces with small genus
Let G be a connected graph with at least vertices that contains a perfect matching. Then G is if for each pair of disjoint matchings of size m and n, respectively, there exists a perfect matching F in G such that and . A graph G is 1-embeddable in a surface Σ if G can be drawn in Σ so that every edge of G crosses at most one other edge at a point. R.E.L. Aldred and M.D. Plummer [1], [2] investigated the properties for graphs embedded in the plane, torus, projective plane and Klein bottle. In this paper, we study the property for 1-embeddable graphs in surfaces with small genus. It is shown that no 1-embeddable graph in the plane or projective plane is and no 1-embeddable graph in the torus or Klein bottle is . As corollaries, no 1-embeddable graph in the plane or projective plane is 5-extendable and no 1-embeddable graph in the torus or Klein bottle is 6-extendable. Some examples show that such results are best possible.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.