Alain D. Starke, Vegard R. Solberg, Sebastian Øverhaug, Christoph Trattner
{"title":"利用人工判断检验新闻领域特定特征相似性函数的优点","authors":"Alain D. Starke, Vegard R. Solberg, Sebastian Øverhaug, Christoph Trattner","doi":"10.1007/s11257-024-09412-2","DOIUrl":null,"url":null,"abstract":"<p>Online news article recommendations are typically of the ‘more like this’ type, generated by similarity functions. Across three studies, we examined the representativeness of different similarity functions for news item retrieval, by comparing them to human judgments of similarity. In Study 1 (<span>\\(N=401\\)</span>), participants assessed the overall similarity of ten randomly paired news articles on politics and compared their judgments to different feature-specific similarity functions (e.g., based on body text or images). In Study 2, we checked for domain differences in a mixed-methods survey (<span>\\(N=45\\)</span>), surfacing evidence that the effectiveness of similarity functions differs across different news categories (‘Recent Events’, ‘Sport’). In Study 3 (<span>\\(N=173\\)</span>), we improved the design of Study 1, by controlling for how news articles were matched, differentiating between dissimilar news articles and articles that were matched on a shared topic, named entities, and/or date of publication, across ‘Recent Events’ and ‘Sport’ categories. Across all studies, we found that users mostly used text-based features (e.g., body text, title) for their similarity judgments, while BodyText:TF-IDF was found to be the most representative for their judgments. Moreover, the strength of similarity judgments by humans and similarity scores by feature-specific functions was strongly affected by how news article pairs were matched. We show that humans and similarity functions are better aligned when two news articles are more alike, such as in a news recommendation scenario.</p>","PeriodicalId":49388,"journal":{"name":"User Modeling and User-Adapted Interaction","volume":"3 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining the merits of feature-specific similarity functions in the news domain using human judgments\",\"authors\":\"Alain D. Starke, Vegard R. Solberg, Sebastian Øverhaug, Christoph Trattner\",\"doi\":\"10.1007/s11257-024-09412-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Online news article recommendations are typically of the ‘more like this’ type, generated by similarity functions. Across three studies, we examined the representativeness of different similarity functions for news item retrieval, by comparing them to human judgments of similarity. In Study 1 (<span>\\\\(N=401\\\\)</span>), participants assessed the overall similarity of ten randomly paired news articles on politics and compared their judgments to different feature-specific similarity functions (e.g., based on body text or images). In Study 2, we checked for domain differences in a mixed-methods survey (<span>\\\\(N=45\\\\)</span>), surfacing evidence that the effectiveness of similarity functions differs across different news categories (‘Recent Events’, ‘Sport’). In Study 3 (<span>\\\\(N=173\\\\)</span>), we improved the design of Study 1, by controlling for how news articles were matched, differentiating between dissimilar news articles and articles that were matched on a shared topic, named entities, and/or date of publication, across ‘Recent Events’ and ‘Sport’ categories. Across all studies, we found that users mostly used text-based features (e.g., body text, title) for their similarity judgments, while BodyText:TF-IDF was found to be the most representative for their judgments. Moreover, the strength of similarity judgments by humans and similarity scores by feature-specific functions was strongly affected by how news article pairs were matched. We show that humans and similarity functions are better aligned when two news articles are more alike, such as in a news recommendation scenario.</p>\",\"PeriodicalId\":49388,\"journal\":{\"name\":\"User Modeling and User-Adapted Interaction\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"User Modeling and User-Adapted Interaction\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11257-024-09412-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"User Modeling and User-Adapted Interaction","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11257-024-09412-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Examining the merits of feature-specific similarity functions in the news domain using human judgments
Online news article recommendations are typically of the ‘more like this’ type, generated by similarity functions. Across three studies, we examined the representativeness of different similarity functions for news item retrieval, by comparing them to human judgments of similarity. In Study 1 (\(N=401\)), participants assessed the overall similarity of ten randomly paired news articles on politics and compared their judgments to different feature-specific similarity functions (e.g., based on body text or images). In Study 2, we checked for domain differences in a mixed-methods survey (\(N=45\)), surfacing evidence that the effectiveness of similarity functions differs across different news categories (‘Recent Events’, ‘Sport’). In Study 3 (\(N=173\)), we improved the design of Study 1, by controlling for how news articles were matched, differentiating between dissimilar news articles and articles that were matched on a shared topic, named entities, and/or date of publication, across ‘Recent Events’ and ‘Sport’ categories. Across all studies, we found that users mostly used text-based features (e.g., body text, title) for their similarity judgments, while BodyText:TF-IDF was found to be the most representative for their judgments. Moreover, the strength of similarity judgments by humans and similarity scores by feature-specific functions was strongly affected by how news article pairs were matched. We show that humans and similarity functions are better aligned when two news articles are more alike, such as in a news recommendation scenario.
期刊介绍:
User Modeling and User-Adapted Interaction provides an interdisciplinary forum for the dissemination of novel and significant original research results about interactive computer systems that can adapt themselves to their users, and on the design, use, and evaluation of user models for adaptation. The journal publishes high-quality original papers from, e.g., the following areas: acquisition and formal representation of user models; conceptual models and user stereotypes for personalization; student modeling and adaptive learning; models of groups of users; user model driven personalised information discovery and retrieval; recommender systems; adaptive user interfaces and agents; adaptation for accessibility and inclusion; generic user modeling systems and tools; interoperability of user models; personalization in areas such as; affective computing; ubiquitous and mobile computing; language based interactions; multi-modal interactions; virtual and augmented reality; social media and the Web; human-robot interaction; behaviour change interventions; personalized applications in specific domains; privacy, accountability, and security of information for personalization; responsible adaptation: fairness, accountability, explainability, transparency and control; methods for the design and evaluation of user models and adaptive systems