2023 年土耳其 7.8 级和 7.5 级地震的有限断层随机模拟及其在卡赫拉曼马拉什市区域建筑物损害评估中的应用

IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Fangbo Wang, Yaowen Zhang, Bo Yang, Xuchuan Lin, Zhenning Ba
{"title":"2023 年土耳其 7.8 级和 7.5 级地震的有限断层随机模拟及其在卡赫拉曼马拉什市区域建筑物损害评估中的应用","authors":"Fangbo Wang, Yaowen Zhang, Bo Yang, Xuchuan Lin, Zhenning Ba","doi":"10.1007/s10518-024-01990-1","DOIUrl":null,"url":null,"abstract":"<p>On February 6, 2023, an <i>M</i><sub>w</sub> 7.8 earthquake occurred in southern Turkey, and only nine hours later, an <i>M</i><sub>w</sub> 7.5 earthquake occurred 95 km north of the first earthquake epicenter. This study employed stochastic finite fault method to simulate the ground motions from the earthquake doublet. The input parameters of source, path, site are mostly determined by regression of station records. The simulated ground motions are validated by comparing with eight station records, and results show that simulated PGA, waveform, PSA curve, duration match with those from station records with minor discrepancies. In addition, goodness-of-fit evaluation is also performed. Regional building damage estimation results show that severely damaged and collapsed buildings increased from 28 to 42% after the second earthquake, and 1/4 buildings damage state experienced one-level jump, which indicates that the second earthquake might significantly intensify buildings damage and should be carefully evaluated within an earthquake doublet context. The stochastic finite fault simulation in this study could provide a basis for future studies on the Turkey earthquake doublet, and the regional buildings damage estimation could be helpful for improvement of earthquake rescue and disaster mitigation policies.</p>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic finite fault simulation of 2023 Mw 7.8 and Mw 7.5 Turkey earthquakes and its application to regional buildings damage estimation at Kahramanmaras City\",\"authors\":\"Fangbo Wang, Yaowen Zhang, Bo Yang, Xuchuan Lin, Zhenning Ba\",\"doi\":\"10.1007/s10518-024-01990-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On February 6, 2023, an <i>M</i><sub>w</sub> 7.8 earthquake occurred in southern Turkey, and only nine hours later, an <i>M</i><sub>w</sub> 7.5 earthquake occurred 95 km north of the first earthquake epicenter. This study employed stochastic finite fault method to simulate the ground motions from the earthquake doublet. The input parameters of source, path, site are mostly determined by regression of station records. The simulated ground motions are validated by comparing with eight station records, and results show that simulated PGA, waveform, PSA curve, duration match with those from station records with minor discrepancies. In addition, goodness-of-fit evaluation is also performed. Regional building damage estimation results show that severely damaged and collapsed buildings increased from 28 to 42% after the second earthquake, and 1/4 buildings damage state experienced one-level jump, which indicates that the second earthquake might significantly intensify buildings damage and should be carefully evaluated within an earthquake doublet context. The stochastic finite fault simulation in this study could provide a basis for future studies on the Turkey earthquake doublet, and the regional buildings damage estimation could be helpful for improvement of earthquake rescue and disaster mitigation policies.</p>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10518-024-01990-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10518-024-01990-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

2023 年 2 月 6 日,土耳其南部发生了 7.8 级地震,仅 9 小时后,在第一个地震震中以北 95 公里处又发生了 7.5 级地震。本研究采用随机有限断层法模拟了双联地震的地面运动。震源、路径、地点等输入参数主要由台站记录回归确定。结果表明,模拟的 PGA、波形、PSA 曲线、持续时间与台站记录相符,差异较小。此外,还进行了拟合优度评估。区域建筑物破坏估计结果表明,第二次地震后严重损坏和倒塌的建筑物从 28%增加到 42%,1/4 的建筑物破坏状态出现了一级跳变,这表明第二次地震可能会显著加剧建筑物破坏,应在地震双重背景下进行仔细评估。本研究中的随机有限断层模拟可为未来土耳其地震双震研究提供基础,区域建筑物破坏估计有助于改进地震救援和减灾政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stochastic finite fault simulation of 2023 Mw 7.8 and Mw 7.5 Turkey earthquakes and its application to regional buildings damage estimation at Kahramanmaras City

Stochastic finite fault simulation of 2023 Mw 7.8 and Mw 7.5 Turkey earthquakes and its application to regional buildings damage estimation at Kahramanmaras City

On February 6, 2023, an Mw 7.8 earthquake occurred in southern Turkey, and only nine hours later, an Mw 7.5 earthquake occurred 95 km north of the first earthquake epicenter. This study employed stochastic finite fault method to simulate the ground motions from the earthquake doublet. The input parameters of source, path, site are mostly determined by regression of station records. The simulated ground motions are validated by comparing with eight station records, and results show that simulated PGA, waveform, PSA curve, duration match with those from station records with minor discrepancies. In addition, goodness-of-fit evaluation is also performed. Regional building damage estimation results show that severely damaged and collapsed buildings increased from 28 to 42% after the second earthquake, and 1/4 buildings damage state experienced one-level jump, which indicates that the second earthquake might significantly intensify buildings damage and should be carefully evaluated within an earthquake doublet context. The stochastic finite fault simulation in this study could provide a basis for future studies on the Turkey earthquake doublet, and the regional buildings damage estimation could be helpful for improvement of earthquake rescue and disaster mitigation policies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Earthquake Engineering
Bulletin of Earthquake Engineering 工程技术-地球科学综合
CiteScore
8.90
自引率
19.60%
发文量
263
审稿时长
7.5 months
期刊介绍: Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings. Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more. This is the Official Publication of the European Association for Earthquake Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信