{"title":"结合频谱分解法和经验格林函数法模拟基岩处的区域性地震动","authors":"Gabriele Ameri, Hussein Shible, David Baumont","doi":"10.1007/s10518-024-01988-9","DOIUrl":null,"url":null,"abstract":"<div><p>Estimating earthquake ground motions at reference bedrock is a major issue in site-specific seismic hazard assessment. Deriving or adjusting empirical ground motion models (GMMs) for reference bedrock is challenging and affected by large epistemic uncertainties. We propose a methodology to simulate region-specific reference bedrock time histories by combining spectral decompositions of ground motions with Empirical Green’s Functions (EGFs) simulation technique. First, we adopt the nonparametric spectral decomposition approach to separate the contribution of source, path, and site. We remove the average source and site effects from observed small-magnitude recordings in the target region through deconvolution in the Fourier domain. This way, the obtained deconvolved EGFs represent path term only. Then, we couple the EGFs with k<sup>− 2</sup> kinematic rupture models for target scenario events. For each target magnitude, a set of rupture models following a ω-squared source spectrum are generated sampling the uncertainties in kinematic source parameters (e.g., slip distribution, rupture velocity, hypocentral location, stress drop, and rupture dimensions). The proposed approach is validated using recorded ground motions at reference sites from multiple earthquakes in Central Italy. The power of this approach lies in its ability to map the path-specific effects into the ground-motion field, providing 3-component time histories covering a wide frequency range, without the need for computationally expensive approaches to simulate 3D wave propagation. The region-specific, site-effects-free dataset produced by this approach can be used alone or in combination with existing empirical datasets to adjust existing GMMs, derive new GMMs, or select hazard-consistent time histories to be used in soil and structural response analyses.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 11","pages":"5863 - 5890"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of region-specific ground motions at bedrock by combining spectral decomposition and empirical Green’s functions approaches\",\"authors\":\"Gabriele Ameri, Hussein Shible, David Baumont\",\"doi\":\"10.1007/s10518-024-01988-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Estimating earthquake ground motions at reference bedrock is a major issue in site-specific seismic hazard assessment. Deriving or adjusting empirical ground motion models (GMMs) for reference bedrock is challenging and affected by large epistemic uncertainties. We propose a methodology to simulate region-specific reference bedrock time histories by combining spectral decompositions of ground motions with Empirical Green’s Functions (EGFs) simulation technique. First, we adopt the nonparametric spectral decomposition approach to separate the contribution of source, path, and site. We remove the average source and site effects from observed small-magnitude recordings in the target region through deconvolution in the Fourier domain. This way, the obtained deconvolved EGFs represent path term only. Then, we couple the EGFs with k<sup>− 2</sup> kinematic rupture models for target scenario events. For each target magnitude, a set of rupture models following a ω-squared source spectrum are generated sampling the uncertainties in kinematic source parameters (e.g., slip distribution, rupture velocity, hypocentral location, stress drop, and rupture dimensions). The proposed approach is validated using recorded ground motions at reference sites from multiple earthquakes in Central Italy. The power of this approach lies in its ability to map the path-specific effects into the ground-motion field, providing 3-component time histories covering a wide frequency range, without the need for computationally expensive approaches to simulate 3D wave propagation. The region-specific, site-effects-free dataset produced by this approach can be used alone or in combination with existing empirical datasets to adjust existing GMMs, derive new GMMs, or select hazard-consistent time histories to be used in soil and structural response analyses.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"22 11\",\"pages\":\"5863 - 5890\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-01988-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-01988-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Simulation of region-specific ground motions at bedrock by combining spectral decomposition and empirical Green’s functions approaches
Estimating earthquake ground motions at reference bedrock is a major issue in site-specific seismic hazard assessment. Deriving or adjusting empirical ground motion models (GMMs) for reference bedrock is challenging and affected by large epistemic uncertainties. We propose a methodology to simulate region-specific reference bedrock time histories by combining spectral decompositions of ground motions with Empirical Green’s Functions (EGFs) simulation technique. First, we adopt the nonparametric spectral decomposition approach to separate the contribution of source, path, and site. We remove the average source and site effects from observed small-magnitude recordings in the target region through deconvolution in the Fourier domain. This way, the obtained deconvolved EGFs represent path term only. Then, we couple the EGFs with k− 2 kinematic rupture models for target scenario events. For each target magnitude, a set of rupture models following a ω-squared source spectrum are generated sampling the uncertainties in kinematic source parameters (e.g., slip distribution, rupture velocity, hypocentral location, stress drop, and rupture dimensions). The proposed approach is validated using recorded ground motions at reference sites from multiple earthquakes in Central Italy. The power of this approach lies in its ability to map the path-specific effects into the ground-motion field, providing 3-component time histories covering a wide frequency range, without the need for computationally expensive approaches to simulate 3D wave propagation. The region-specific, site-effects-free dataset produced by this approach can be used alone or in combination with existing empirical datasets to adjust existing GMMs, derive new GMMs, or select hazard-consistent time histories to be used in soil and structural response analyses.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.