通过纠缠光子提高量子偏振测量的非局域精度

IF 4.4 Q1 OPTICS
Ali Pedram, Vira R. Besaga, Frank Setzpfandt, Özgür E. Müstecaplıoğlu
{"title":"通过纠缠光子提高量子偏振测量的非局域精度","authors":"Ali Pedram,&nbsp;Vira R. Besaga,&nbsp;Frank Setzpfandt,&nbsp;Özgür E. Müstecaplıoğlu","doi":"10.1002/qute.202400059","DOIUrl":null,"url":null,"abstract":"<p>A nonlocal quantum approach is presented to polarimetry, leveraging the phenomenon of entanglement in photon pairs to enhance the precision in sample property determination. By employing two distinct channels, one containing the sample of interest and the other serving as a reference, the conditions are explored under which the inherent correlation between entangled photons can increase measurement sensitivity. Specifically, the quantum Fisher information (QFI) is calculated and compare the accuracy and sensitivity for the cases of single sample channel versus two channel quantum state tomography measurements. The theoretical results are verified by experimental analysis. The theoretical and experimental framework demonstrates that the nonlocal strategy enables enhanced precision and accuracy in extracting information about sample characteristics more than the local measurements. Depending on the chosen estimators and noise channels present, theoretical and experimental results show that noise-induced bias decreases the precision for the estimated parameter. Such a quantum-enhanced nonlocal polarimetry holds promise for advancing diverse fields including material science, biomedical imaging, and remote sensing, via high-precision measurements through quantum entanglement.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400059","citationCount":"0","resultStr":"{\"title\":\"Nonlocality Enhanced Precision in Quantum Polarimetry via Entangled Photons\",\"authors\":\"Ali Pedram,&nbsp;Vira R. Besaga,&nbsp;Frank Setzpfandt,&nbsp;Özgür E. Müstecaplıoğlu\",\"doi\":\"10.1002/qute.202400059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A nonlocal quantum approach is presented to polarimetry, leveraging the phenomenon of entanglement in photon pairs to enhance the precision in sample property determination. By employing two distinct channels, one containing the sample of interest and the other serving as a reference, the conditions are explored under which the inherent correlation between entangled photons can increase measurement sensitivity. Specifically, the quantum Fisher information (QFI) is calculated and compare the accuracy and sensitivity for the cases of single sample channel versus two channel quantum state tomography measurements. The theoretical results are verified by experimental analysis. The theoretical and experimental framework demonstrates that the nonlocal strategy enables enhanced precision and accuracy in extracting information about sample characteristics more than the local measurements. Depending on the chosen estimators and noise channels present, theoretical and experimental results show that noise-induced bias decreases the precision for the estimated parameter. Such a quantum-enhanced nonlocal polarimetry holds promise for advancing diverse fields including material science, biomedical imaging, and remote sensing, via high-precision measurements through quantum entanglement.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"7 11\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400059\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

利用光子对中的纠缠现象,提出了一种非局部量子极性测量方法,以提高样品特性测定的精度。通过采用两个不同的通道(一个包含相关样品,另一个作为参考),探索了纠缠光子之间的固有相关性能够提高测量灵敏度的条件。具体而言,计算了量子费雪信息(QFI),并比较了单样品通道与双通道量子态层析测量的准确性和灵敏度。实验分析验证了理论结果。理论和实验框架表明,与本地测量相比,非本地策略能够提高提取样本特征信息的精度和准确性。理论和实验结果表明,根据所选估计器和存在的噪声通道,噪声引起的偏差会降低估计参数的精度。通过量子纠缠进行高精度测量,这种量子增强非局部极坐标测量法有望推动材料科学、生物医学成像和遥感等多个领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonlocality Enhanced Precision in Quantum Polarimetry via Entangled Photons

Nonlocality Enhanced Precision in Quantum Polarimetry via Entangled Photons

A nonlocal quantum approach is presented to polarimetry, leveraging the phenomenon of entanglement in photon pairs to enhance the precision in sample property determination. By employing two distinct channels, one containing the sample of interest and the other serving as a reference, the conditions are explored under which the inherent correlation between entangled photons can increase measurement sensitivity. Specifically, the quantum Fisher information (QFI) is calculated and compare the accuracy and sensitivity for the cases of single sample channel versus two channel quantum state tomography measurements. The theoretical results are verified by experimental analysis. The theoretical and experimental framework demonstrates that the nonlocal strategy enables enhanced precision and accuracy in extracting information about sample characteristics more than the local measurements. Depending on the chosen estimators and noise channels present, theoretical and experimental results show that noise-induced bias decreases the precision for the estimated parameter. Such a quantum-enhanced nonlocal polarimetry holds promise for advancing diverse fields including material science, biomedical imaging, and remote sensing, via high-precision measurements through quantum entanglement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信