{"title":"一种可回收的聚氨酯,通过 B-N 配位和可逆的 B-O 键,具有独特的热硬挺性能","authors":"Hui Xiong \n (, ), Linjun Zhang \n (, ), Qi Wu \n (, ), Jinrong Wu \n (, )","doi":"10.1007/s40843-024-3025-1","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal softening is an inevitable process in the physical network. Polyurethane (PU), a typical commercial material, is constructed by physical networks, which undergoes the serious thermal decay on mechanical properties at high temperature. Herein, a physically cross-linked PU with a unique thermal stiffening behavior has been developed by incorporating B-N coordination with reversible B-O bonds. The B-N coordination can significantly improve the mechanical properties of the PU. The reversible B-O bonds (temperature dependent reversible transformation between B-OH and B-O-B) are conducive to constructing more multi-coordination macromolecular crosslinking points and more stable B-N coordination bonds at high temperature, endowing the PU with the special thermal stiffening behavior for the first time. Such thermal stiffening behavior compensates for the bond breakage and the network destruction caused by heat, significantly expands the rubbery plateau and delays the entire chain motion of the thermoplastic PU. As a result, the terminal flow occurs at a higher temperature up to 200°C. The modulus retention ratio of the materials is up to 87% even at 145°C, which is much higher than that of the existing PU elastomer with the physical network and even some covalent cross-link PU. Simultaneously, the physical network ensures the recyclability of the PU, and the thermal stiffening behavior is still obtained in recycled PU. This work provides a simple strategy to impart thermal stiffening behavior to the physically crosslinked PU, thereby significantly extending the operating temperature range of thermoplastic PU, which can potentially expand the scopes of PU in applications under harsh conditions.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 10","pages":"3339 - 3346"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A recyclable polyurethane with characteristic thermal stiffening behavior via B-N coordination with reversible B-O bonds\",\"authors\":\"Hui Xiong \\n (, ), Linjun Zhang \\n (, ), Qi Wu \\n (, ), Jinrong Wu \\n (, )\",\"doi\":\"10.1007/s40843-024-3025-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal softening is an inevitable process in the physical network. Polyurethane (PU), a typical commercial material, is constructed by physical networks, which undergoes the serious thermal decay on mechanical properties at high temperature. Herein, a physically cross-linked PU with a unique thermal stiffening behavior has been developed by incorporating B-N coordination with reversible B-O bonds. The B-N coordination can significantly improve the mechanical properties of the PU. The reversible B-O bonds (temperature dependent reversible transformation between B-OH and B-O-B) are conducive to constructing more multi-coordination macromolecular crosslinking points and more stable B-N coordination bonds at high temperature, endowing the PU with the special thermal stiffening behavior for the first time. Such thermal stiffening behavior compensates for the bond breakage and the network destruction caused by heat, significantly expands the rubbery plateau and delays the entire chain motion of the thermoplastic PU. As a result, the terminal flow occurs at a higher temperature up to 200°C. The modulus retention ratio of the materials is up to 87% even at 145°C, which is much higher than that of the existing PU elastomer with the physical network and even some covalent cross-link PU. Simultaneously, the physical network ensures the recyclability of the PU, and the thermal stiffening behavior is still obtained in recycled PU. This work provides a simple strategy to impart thermal stiffening behavior to the physically crosslinked PU, thereby significantly extending the operating temperature range of thermoplastic PU, which can potentially expand the scopes of PU in applications under harsh conditions.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 10\",\"pages\":\"3339 - 3346\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3025-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3025-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
热软化是物理网络不可避免的过程。聚氨酯(PU)是一种典型的商业材料,由物理网络构成,在高温下会对机械性能产生严重的热衰减。在这里,我们通过将 B-N 配位与可逆的 B-O 键结合在一起,开发出了一种具有独特热增韧行为的物理交联聚氨酯。B-N 配位可明显改善聚氨酯的机械性能。可逆 B-O 键(B-OH 和 B-O-B 之间的可逆转化随温度变化)有利于在高温下构建更多的多配位大分子交联点和更稳定的 B-N 配位键,从而首次赋予聚氨酯特殊的热硬挺行为。这种热僵化行为弥补了热引起的键断裂和网络破坏,显著扩大了橡胶高原,并延迟了热塑性聚氨酯的整个链运动。因此,终端流动发生的温度更高,可达 200°C。即使在 145°C 时,材料的模量保持率也高达 87%,远高于现有的物理网络聚氨酯弹性体,甚至一些共价交联聚氨酯。同时,物理网络确保了聚氨酯的可回收性,而且回收的聚氨酯仍具有热硬性。这项工作提供了一种简单的策略,可为物理交联聚氨酯赋予热硬挺性能,从而大大扩展热塑性聚氨酯的工作温度范围,这有可能扩大聚氨酯在恶劣条件下的应用范围。
A recyclable polyurethane with characteristic thermal stiffening behavior via B-N coordination with reversible B-O bonds
Thermal softening is an inevitable process in the physical network. Polyurethane (PU), a typical commercial material, is constructed by physical networks, which undergoes the serious thermal decay on mechanical properties at high temperature. Herein, a physically cross-linked PU with a unique thermal stiffening behavior has been developed by incorporating B-N coordination with reversible B-O bonds. The B-N coordination can significantly improve the mechanical properties of the PU. The reversible B-O bonds (temperature dependent reversible transformation between B-OH and B-O-B) are conducive to constructing more multi-coordination macromolecular crosslinking points and more stable B-N coordination bonds at high temperature, endowing the PU with the special thermal stiffening behavior for the first time. Such thermal stiffening behavior compensates for the bond breakage and the network destruction caused by heat, significantly expands the rubbery plateau and delays the entire chain motion of the thermoplastic PU. As a result, the terminal flow occurs at a higher temperature up to 200°C. The modulus retention ratio of the materials is up to 87% even at 145°C, which is much higher than that of the existing PU elastomer with the physical network and even some covalent cross-link PU. Simultaneously, the physical network ensures the recyclability of the PU, and the thermal stiffening behavior is still obtained in recycled PU. This work provides a simple strategy to impart thermal stiffening behavior to the physically crosslinked PU, thereby significantly extending the operating temperature range of thermoplastic PU, which can potentially expand the scopes of PU in applications under harsh conditions.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.