利用多功能钌络合物进行界面工程,使 CsPbI2Br 包晶太阳能电池的填充因子超过 0.82

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuai Chen  (, ), Binxia Jia  (, ), Depeng Chu  (, ), Hua Li  (, ), Jian Cui  (, ), Wangen Zhao  (, ), Zicheng Ding  (, ), Kui Zhao  (, ), Shengzhong Frank Liu  (, ), Yaohong Zhang  (, ), Guohua Wu  (, )
{"title":"利用多功能钌络合物进行界面工程,使 CsPbI2Br 包晶太阳能电池的填充因子超过 0.82","authors":"Shuai Chen \n (,&nbsp;),&nbsp;Binxia Jia \n (,&nbsp;),&nbsp;Depeng Chu \n (,&nbsp;),&nbsp;Hua Li \n (,&nbsp;),&nbsp;Jian Cui \n (,&nbsp;),&nbsp;Wangen Zhao \n (,&nbsp;),&nbsp;Zicheng Ding \n (,&nbsp;),&nbsp;Kui Zhao \n (,&nbsp;),&nbsp;Shengzhong Frank Liu \n (,&nbsp;),&nbsp;Yaohong Zhang \n (,&nbsp;),&nbsp;Guohua Wu \n (,&nbsp;)","doi":"10.1007/s40843-024-3028-8","DOIUrl":null,"url":null,"abstract":"<div><p>The interface is of paramount importance in heterostructures, as it can be considered as a device in accordance with Kroemer’s dictum. In perovskite solar cells (PSCs), optimizing the interface between the perovskite layer and the hole transport layer is known to be an effective method for enhancing PSC device performance. Herein, a metal ruthenium complex coded as C101 is introduced to the perovskite (CsPbI<sub>2</sub>Br)/hole transport layer (PTAA) interface as a “charge driven motor” to selectively extract holes from CsPbI<sub>2</sub>Br and then transfer them to PTAA, minimizing the voltage loss in PSCs. More significantly, the introduction of C101 layer effectively passivates the surface of CsPbI<sub>2</sub>Br film and reduces the defect density of CsPbI<sub>2</sub>Br film due to the covalent bond between the CsPbI<sub>2</sub>Br and the–C=O group in C101. The photovoltaic performance of CsPbI<sub>2</sub>Br PSCs is enhanced by 23.60% upon the introduction of C101 interfacial layer, with the champion CsPbI<sub>2</sub>Br PSC exhibiting a power conversion efficiency of 14.96% in a reverse scan, a short-circuit current of 15.84 mA·cm<sup>−2</sup>, an open-circuit voltage of 1.15 V, and a fill factor of 82.03%. Additionally, the introduction of C101 simultaneously enhances the humidity tolerance of CsPbI<sub>2</sub>Br PSCs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 10","pages":"3245 - 3252"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial engineering by multifunctional ruthenium complex for CsPbI2Br perovskite solar cells with a fill factor over 0.82\",\"authors\":\"Shuai Chen \\n (,&nbsp;),&nbsp;Binxia Jia \\n (,&nbsp;),&nbsp;Depeng Chu \\n (,&nbsp;),&nbsp;Hua Li \\n (,&nbsp;),&nbsp;Jian Cui \\n (,&nbsp;),&nbsp;Wangen Zhao \\n (,&nbsp;),&nbsp;Zicheng Ding \\n (,&nbsp;),&nbsp;Kui Zhao \\n (,&nbsp;),&nbsp;Shengzhong Frank Liu \\n (,&nbsp;),&nbsp;Yaohong Zhang \\n (,&nbsp;),&nbsp;Guohua Wu \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-024-3028-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The interface is of paramount importance in heterostructures, as it can be considered as a device in accordance with Kroemer’s dictum. In perovskite solar cells (PSCs), optimizing the interface between the perovskite layer and the hole transport layer is known to be an effective method for enhancing PSC device performance. Herein, a metal ruthenium complex coded as C101 is introduced to the perovskite (CsPbI<sub>2</sub>Br)/hole transport layer (PTAA) interface as a “charge driven motor” to selectively extract holes from CsPbI<sub>2</sub>Br and then transfer them to PTAA, minimizing the voltage loss in PSCs. More significantly, the introduction of C101 layer effectively passivates the surface of CsPbI<sub>2</sub>Br film and reduces the defect density of CsPbI<sub>2</sub>Br film due to the covalent bond between the CsPbI<sub>2</sub>Br and the–C=O group in C101. The photovoltaic performance of CsPbI<sub>2</sub>Br PSCs is enhanced by 23.60% upon the introduction of C101 interfacial layer, with the champion CsPbI<sub>2</sub>Br PSC exhibiting a power conversion efficiency of 14.96% in a reverse scan, a short-circuit current of 15.84 mA·cm<sup>−2</sup>, an open-circuit voltage of 1.15 V, and a fill factor of 82.03%. Additionally, the introduction of C101 simultaneously enhances the humidity tolerance of CsPbI<sub>2</sub>Br PSCs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"67 10\",\"pages\":\"3245 - 3252\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-024-3028-8\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3028-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在异质结构中,界面至关重要,因为根据克罗默定律,界面可以被视为一个器件。众所周知,在过氧化物太阳能电池(PSC)中,优化过氧化物层和空穴传输层之间的界面是提高 PSC 器件性能的有效方法。在本文中,一种代号为 C101 的金属钌复合物作为 "电荷驱动电机 "被引入到了包晶体(CsPbI2Br)/空穴传输层(PTAA)界面,从而选择性地从 CsPbI2Br 中提取空穴,然后将其传输到 PTAA,从而将 PSC 中的电压损失降至最低。更重要的是,C101 层的引入有效地钝化了 CsPbI2Br 薄膜的表面,并且由于 CsPbI2Br 与 C101 中的 C=O 基团之间的共价键,降低了 CsPbI2Br 薄膜的缺陷密度。引入 C101 介面层后,CsPbI2Br PSC 的光伏性能提高了 23.60%,冠军 CsPbI2Br PSC 的反向扫描功率转换效率为 14.96%,短路电流为 15.84 mA-cm-2,开路电压为 1.15 V,填充因子为 82.03%。此外,C101 的引入还同时提高了 CsPbI2Br PSC 的耐湿性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interfacial engineering by multifunctional ruthenium complex for CsPbI2Br perovskite solar cells with a fill factor over 0.82

Interfacial engineering by multifunctional ruthenium complex for CsPbI2Br perovskite solar cells with a fill factor over 0.82

The interface is of paramount importance in heterostructures, as it can be considered as a device in accordance with Kroemer’s dictum. In perovskite solar cells (PSCs), optimizing the interface between the perovskite layer and the hole transport layer is known to be an effective method for enhancing PSC device performance. Herein, a metal ruthenium complex coded as C101 is introduced to the perovskite (CsPbI2Br)/hole transport layer (PTAA) interface as a “charge driven motor” to selectively extract holes from CsPbI2Br and then transfer them to PTAA, minimizing the voltage loss in PSCs. More significantly, the introduction of C101 layer effectively passivates the surface of CsPbI2Br film and reduces the defect density of CsPbI2Br film due to the covalent bond between the CsPbI2Br and the–C=O group in C101. The photovoltaic performance of CsPbI2Br PSCs is enhanced by 23.60% upon the introduction of C101 interfacial layer, with the champion CsPbI2Br PSC exhibiting a power conversion efficiency of 14.96% in a reverse scan, a short-circuit current of 15.84 mA·cm−2, an open-circuit voltage of 1.15 V, and a fill factor of 82.03%. Additionally, the introduction of C101 simultaneously enhances the humidity tolerance of CsPbI2Br PSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信