{"title":"前体细胞和分化细胞模型的移动波面:从单稳态到双稳态以及从单调到非单调的参数-结构转变的影响","authors":"Yuanxi Yue, Chunhua Ou","doi":"10.1007/s10884-024-10384-5","DOIUrl":null,"url":null,"abstract":"<p>This paper provides a novel analysis of the rich and complex propagation dynamics to a model of precursor and differentiated cells, with the appearance of non-isolated equilibria on a line in the phase space. We established the existence of traveling waves in the monostable monotone case by means of continuation argument via perturbation in a weighted functional space, by applying the abstract implicit function theorem. We proved necessary and sufficient conditions of the minimal wave speed selection and showed the existence of the transition (turning point) <span>\\(k^*\\)</span> for the minimal wave speed when the parameters <span>\\(\\lambda \\)</span> and <span>\\(\\gamma \\)</span> are fixed. Two explicit estimates about <span>\\(k^*\\)</span> were given by the easy-to-apply theorem we derived. We investigated the decay rate of the minimal traveling wave as <span>\\(z\\rightarrow \\infty \\)</span> in terms of the value of <i>k</i>. We further proved the existence of non-negative wavefronts in the monostable non-monotone case and found that the minimal wave speed is always linearly selected. Finally in the bistable monotone case, the existence and uniqueness of bistable traveling waves were proved via constructing an auxiliary parabolic non-local equation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traveling Wavefronts to a Model of Precursor and Differentiated Cells: Impacting Parameter-Structure Transition from Monostable to Bistable, and from Monotone to Non-monotone\",\"authors\":\"Yuanxi Yue, Chunhua Ou\",\"doi\":\"10.1007/s10884-024-10384-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper provides a novel analysis of the rich and complex propagation dynamics to a model of precursor and differentiated cells, with the appearance of non-isolated equilibria on a line in the phase space. We established the existence of traveling waves in the monostable monotone case by means of continuation argument via perturbation in a weighted functional space, by applying the abstract implicit function theorem. We proved necessary and sufficient conditions of the minimal wave speed selection and showed the existence of the transition (turning point) <span>\\\\(k^*\\\\)</span> for the minimal wave speed when the parameters <span>\\\\(\\\\lambda \\\\)</span> and <span>\\\\(\\\\gamma \\\\)</span> are fixed. Two explicit estimates about <span>\\\\(k^*\\\\)</span> were given by the easy-to-apply theorem we derived. We investigated the decay rate of the minimal traveling wave as <span>\\\\(z\\\\rightarrow \\\\infty \\\\)</span> in terms of the value of <i>k</i>. We further proved the existence of non-negative wavefronts in the monostable non-monotone case and found that the minimal wave speed is always linearly selected. Finally in the bistable monotone case, the existence and uniqueness of bistable traveling waves were proved via constructing an auxiliary parabolic non-local equation.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-024-10384-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-024-10384-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Traveling Wavefronts to a Model of Precursor and Differentiated Cells: Impacting Parameter-Structure Transition from Monostable to Bistable, and from Monotone to Non-monotone
This paper provides a novel analysis of the rich and complex propagation dynamics to a model of precursor and differentiated cells, with the appearance of non-isolated equilibria on a line in the phase space. We established the existence of traveling waves in the monostable monotone case by means of continuation argument via perturbation in a weighted functional space, by applying the abstract implicit function theorem. We proved necessary and sufficient conditions of the minimal wave speed selection and showed the existence of the transition (turning point) \(k^*\) for the minimal wave speed when the parameters \(\lambda \) and \(\gamma \) are fixed. Two explicit estimates about \(k^*\) were given by the easy-to-apply theorem we derived. We investigated the decay rate of the minimal traveling wave as \(z\rightarrow \infty \) in terms of the value of k. We further proved the existence of non-negative wavefronts in the monostable non-monotone case and found that the minimal wave speed is always linearly selected. Finally in the bistable monotone case, the existence and uniqueness of bistable traveling waves were proved via constructing an auxiliary parabolic non-local equation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.