推进心理健康预检:用于心理压力评估的新定制 GPT

Jinwen Tang, Yi Shang
{"title":"推进心理健康预检:用于心理压力评估的新定制 GPT","authors":"Jinwen Tang, Yi Shang","doi":"arxiv-2408.01614","DOIUrl":null,"url":null,"abstract":"This study introduces 'Psycho Analyst', a custom GPT model based on OpenAI's\nGPT-4, optimized for pre-screening mental health disorders. Enhanced with\nDSM-5, PHQ-8, detailed data descriptions, and extensive training data, the\nmodel adeptly decodes nuanced linguistic indicators of mental health disorders.\nIt utilizes a dual-task framework that includes binary classification and a\nthree-stage PHQ-8 score computation involving initial assessment, detailed\nbreakdown, and independent assessment, showcasing refined analytic\ncapabilities. Validation with the DAIC-WOZ dataset reveals F1 and Macro-F1\nscores of 0.929 and 0.949, respectively, along with the lowest MAE and RMSE of\n2.89 and 3.69 in PHQ-8 scoring. These results highlight the model's precision\nand transformative potential in enhancing public mental health support,\nimproving accessibility, cost-effectiveness, and serving as a second opinion\nfor professionals.","PeriodicalId":501112,"journal":{"name":"arXiv - CS - Computers and Society","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Mental Health Pre-Screening: A New Custom GPT for Psychological Distress Assessment\",\"authors\":\"Jinwen Tang, Yi Shang\",\"doi\":\"arxiv-2408.01614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces 'Psycho Analyst', a custom GPT model based on OpenAI's\\nGPT-4, optimized for pre-screening mental health disorders. Enhanced with\\nDSM-5, PHQ-8, detailed data descriptions, and extensive training data, the\\nmodel adeptly decodes nuanced linguistic indicators of mental health disorders.\\nIt utilizes a dual-task framework that includes binary classification and a\\nthree-stage PHQ-8 score computation involving initial assessment, detailed\\nbreakdown, and independent assessment, showcasing refined analytic\\ncapabilities. Validation with the DAIC-WOZ dataset reveals F1 and Macro-F1\\nscores of 0.929 and 0.949, respectively, along with the lowest MAE and RMSE of\\n2.89 and 3.69 in PHQ-8 scoring. These results highlight the model's precision\\nand transformative potential in enhancing public mental health support,\\nimproving accessibility, cost-effectiveness, and serving as a second opinion\\nfor professionals.\",\"PeriodicalId\":501112,\"journal\":{\"name\":\"arXiv - CS - Computers and Society\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computers and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computers and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了 "Psycho Analyst",这是一个基于 OpenAI 的 GPT-4 定制的 GPT 模型,专为预筛查心理健康障碍而优化。该模型采用双任务框架,包括二元分类和 PHQ-8 分值计算的三个阶段,包括初步评估、详细分解和独立评估,展示了精炼的分析能力。通过 DAIC-WOZ 数据集的验证,F1 和 Macro-F1 分数分别为 0.929 和 0.949,PHQ-8 评分的 MAE 和 RMSE 最低,分别为 2.89 和 3.69。这些结果凸显了该模型在加强公共心理健康支持、提高可及性和成本效益以及为专业人员提供第二意见方面的精确性和变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing Mental Health Pre-Screening: A New Custom GPT for Psychological Distress Assessment
This study introduces 'Psycho Analyst', a custom GPT model based on OpenAI's GPT-4, optimized for pre-screening mental health disorders. Enhanced with DSM-5, PHQ-8, detailed data descriptions, and extensive training data, the model adeptly decodes nuanced linguistic indicators of mental health disorders. It utilizes a dual-task framework that includes binary classification and a three-stage PHQ-8 score computation involving initial assessment, detailed breakdown, and independent assessment, showcasing refined analytic capabilities. Validation with the DAIC-WOZ dataset reveals F1 and Macro-F1 scores of 0.929 and 0.949, respectively, along with the lowest MAE and RMSE of 2.89 and 3.69 in PHQ-8 scoring. These results highlight the model's precision and transformative potential in enhancing public mental health support, improving accessibility, cost-effectiveness, and serving as a second opinion for professionals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信