Saraswathi Kalyani Subramanian, Sridharan Rengaswamy, Prasanna Gajanan Deshmukh, Binukumar G. Nair, S. Mahesh Babu
{"title":"科代卡纳尔天文台的昼间湍流强度剖面测量","authors":"Saraswathi Kalyani Subramanian, Sridharan Rengaswamy, Prasanna Gajanan Deshmukh, Binukumar G. Nair, S. Mahesh Babu","doi":"10.1117/1.jatis.10.3.039004","DOIUrl":null,"url":null,"abstract":"The Indian Institute of Astrophysics is developing a Multi-Conjugate Adaptive Optics system for the Kodaikanal Tower Telescope. In this context, we measured the daytime turbulence strength profile at the Kodaikanal Observatory. The first method based on wavefront sensor images, called solar differential image motion monitor+, was used to estimate the higher altitude turbulence up to a height of 5 to 6 km. The second method used balloon-borne temperature sensors to measure the near-Earth turbulence up to 350 m. We also carried out simulations to validate the performance of our system. We report the first-ever daytime turbulence strength profile measurements at the observatory. We identified the presence of a strong turbulence layer ∼3 km above the observatory. The measured near-Earth turbulence matches the trend that is expected from the model for a daytime component of turbulence and gives an integrated r0 of ∼4 cm at 500 nm. This is consistent with earlier seeing measurements. This shows that a low-cost setup with a small telescope and a simple array of temperature sensors can be used for estimating the turbulence strength profile at the site.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Daytime turbulence strength profile measurement at Kodaikanal Observatory\",\"authors\":\"Saraswathi Kalyani Subramanian, Sridharan Rengaswamy, Prasanna Gajanan Deshmukh, Binukumar G. Nair, S. Mahesh Babu\",\"doi\":\"10.1117/1.jatis.10.3.039004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Indian Institute of Astrophysics is developing a Multi-Conjugate Adaptive Optics system for the Kodaikanal Tower Telescope. In this context, we measured the daytime turbulence strength profile at the Kodaikanal Observatory. The first method based on wavefront sensor images, called solar differential image motion monitor+, was used to estimate the higher altitude turbulence up to a height of 5 to 6 km. The second method used balloon-borne temperature sensors to measure the near-Earth turbulence up to 350 m. We also carried out simulations to validate the performance of our system. We report the first-ever daytime turbulence strength profile measurements at the observatory. We identified the presence of a strong turbulence layer ∼3 km above the observatory. The measured near-Earth turbulence matches the trend that is expected from the model for a daytime component of turbulence and gives an integrated r0 of ∼4 cm at 500 nm. This is consistent with earlier seeing measurements. This shows that a low-cost setup with a small telescope and a simple array of temperature sensors can be used for estimating the turbulence strength profile at the site.\",\"PeriodicalId\":54342,\"journal\":{\"name\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jatis.10.3.039004\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jatis.10.3.039004","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Daytime turbulence strength profile measurement at Kodaikanal Observatory
The Indian Institute of Astrophysics is developing a Multi-Conjugate Adaptive Optics system for the Kodaikanal Tower Telescope. In this context, we measured the daytime turbulence strength profile at the Kodaikanal Observatory. The first method based on wavefront sensor images, called solar differential image motion monitor+, was used to estimate the higher altitude turbulence up to a height of 5 to 6 km. The second method used balloon-borne temperature sensors to measure the near-Earth turbulence up to 350 m. We also carried out simulations to validate the performance of our system. We report the first-ever daytime turbulence strength profile measurements at the observatory. We identified the presence of a strong turbulence layer ∼3 km above the observatory. The measured near-Earth turbulence matches the trend that is expected from the model for a daytime component of turbulence and gives an integrated r0 of ∼4 cm at 500 nm. This is consistent with earlier seeing measurements. This shows that a low-cost setup with a small telescope and a simple array of temperature sensors can be used for estimating the turbulence strength profile at the site.
期刊介绍:
The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.