Zonglin Lu, Tong Lu, Junmei Shi, Kun Chen, Hangming Guo, Na Li, Xiaori Han
{"title":"13C 标记的玉米根、其衍生生物炭和氮磷钾在长期改良土壤中诱导的短期微生物群落动态","authors":"Zonglin Lu, Tong Lu, Junmei Shi, Kun Chen, Hangming Guo, Na Li, Xiaori Han","doi":"10.1007/s42773-024-00363-w","DOIUrl":null,"url":null,"abstract":"<p>Crop residues and their derived biochar are frequently used for their potential to improve grain yield, soil fertility and carbon (C) sequestration. However, the effects of root are often overlooked, and the effects of chemical fertilizer (NPK) combined with root or its biochar on microbial community structure need further study. This study used <sup>13</sup>C-labeled maize root, its biochar and soil with different fertilization for 8 years as materials and substrates. A 112-day incubation experiment was conducted to explore the effects of microbial community on the C processing. During incubation, the root-C (54.9%) mineralized significantly more than biochar-C (12.8%), while NPK addition significantly increased the root-C mineralization. Adding biochar alone did not significantly change the microbial community. Compared to the biochar treatment (BC), the root treatment (R) notably increased the contents of total phospholipid fatty acids (PLFAs), <sup>13</sup>C-PLFA and the proportion of fungi and Gram-negative bacteria, but reduced the proportion of actinomycetes. The root mineralization was significantly correlated with the relative content of <sup>13</sup>C-Gram-positive bacteria and <sup>13</sup>C-fungi, while biochar mineralization was significantly correlated with the relative content of <sup>13</sup>C-Gram-positive bacteria and <sup>13</sup>C-actinomycetes. Notably, NPK addition significantly increased the contribution of biochar-C to PLFA-C pool, while decreasing the contribution of root-C. In summary, due to microbial adaptation to the lack of bioavailable C in biochar-amended soil, biochar can act as a buffer against the significant disturbance caused by NPK to microbial communities and native soil organic carbon (SOC), which contributes to the steady enhancement in soil C storage.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"84 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term microbial community dynamics induced by 13C-labeled maize root, its derived biochar and NPK in long-term amended soil\",\"authors\":\"Zonglin Lu, Tong Lu, Junmei Shi, Kun Chen, Hangming Guo, Na Li, Xiaori Han\",\"doi\":\"10.1007/s42773-024-00363-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Crop residues and their derived biochar are frequently used for their potential to improve grain yield, soil fertility and carbon (C) sequestration. However, the effects of root are often overlooked, and the effects of chemical fertilizer (NPK) combined with root or its biochar on microbial community structure need further study. This study used <sup>13</sup>C-labeled maize root, its biochar and soil with different fertilization for 8 years as materials and substrates. A 112-day incubation experiment was conducted to explore the effects of microbial community on the C processing. During incubation, the root-C (54.9%) mineralized significantly more than biochar-C (12.8%), while NPK addition significantly increased the root-C mineralization. Adding biochar alone did not significantly change the microbial community. Compared to the biochar treatment (BC), the root treatment (R) notably increased the contents of total phospholipid fatty acids (PLFAs), <sup>13</sup>C-PLFA and the proportion of fungi and Gram-negative bacteria, but reduced the proportion of actinomycetes. The root mineralization was significantly correlated with the relative content of <sup>13</sup>C-Gram-positive bacteria and <sup>13</sup>C-fungi, while biochar mineralization was significantly correlated with the relative content of <sup>13</sup>C-Gram-positive bacteria and <sup>13</sup>C-actinomycetes. Notably, NPK addition significantly increased the contribution of biochar-C to PLFA-C pool, while decreasing the contribution of root-C. In summary, due to microbial adaptation to the lack of bioavailable C in biochar-amended soil, biochar can act as a buffer against the significant disturbance caused by NPK to microbial communities and native soil organic carbon (SOC), which contributes to the steady enhancement in soil C storage.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-024-00363-w\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00363-w","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Short-term microbial community dynamics induced by 13C-labeled maize root, its derived biochar and NPK in long-term amended soil
Crop residues and their derived biochar are frequently used for their potential to improve grain yield, soil fertility and carbon (C) sequestration. However, the effects of root are often overlooked, and the effects of chemical fertilizer (NPK) combined with root or its biochar on microbial community structure need further study. This study used 13C-labeled maize root, its biochar and soil with different fertilization for 8 years as materials and substrates. A 112-day incubation experiment was conducted to explore the effects of microbial community on the C processing. During incubation, the root-C (54.9%) mineralized significantly more than biochar-C (12.8%), while NPK addition significantly increased the root-C mineralization. Adding biochar alone did not significantly change the microbial community. Compared to the biochar treatment (BC), the root treatment (R) notably increased the contents of total phospholipid fatty acids (PLFAs), 13C-PLFA and the proportion of fungi and Gram-negative bacteria, but reduced the proportion of actinomycetes. The root mineralization was significantly correlated with the relative content of 13C-Gram-positive bacteria and 13C-fungi, while biochar mineralization was significantly correlated with the relative content of 13C-Gram-positive bacteria and 13C-actinomycetes. Notably, NPK addition significantly increased the contribution of biochar-C to PLFA-C pool, while decreasing the contribution of root-C. In summary, due to microbial adaptation to the lack of bioavailable C in biochar-amended soil, biochar can act as a buffer against the significant disturbance caused by NPK to microbial communities and native soil organic carbon (SOC), which contributes to the steady enhancement in soil C storage.
期刊介绍:
Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.