{"title":"有效场论中双核子相互作用的辐射修正和重正化群","authors":"Thomas R. Richardson, Immo C. Reis","doi":"10.1007/s00601-024-01948-8","DOIUrl":null,"url":null,"abstract":"<div><p>We use a combination of effective field theory and the renormalization group to determine the impact of radiative corrections on the nucleon–nucleon potential and the binding energy of the deuteron. In order to do so, we present a modified version of pionless effective field theory inspired by earlier work in nonrelativistic quantum electrodynamics. The renormalization group improvement of the deuteron binding energy leads to a shift on the order of a few percent and is consistent with the experimental value. This work serves as a starting point for a dedicated study of radiative corrections in few-body systems relevant for precision tests of the Standard Model in an effective field theory framework.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00601-024-01948-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Radiative Corrections and the Renormalization Group for the Two-Nucleon Interaction in Effective Field Theory\",\"authors\":\"Thomas R. Richardson, Immo C. Reis\",\"doi\":\"10.1007/s00601-024-01948-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We use a combination of effective field theory and the renormalization group to determine the impact of radiative corrections on the nucleon–nucleon potential and the binding energy of the deuteron. In order to do so, we present a modified version of pionless effective field theory inspired by earlier work in nonrelativistic quantum electrodynamics. The renormalization group improvement of the deuteron binding energy leads to a shift on the order of a few percent and is consistent with the experimental value. This work serves as a starting point for a dedicated study of radiative corrections in few-body systems relevant for precision tests of the Standard Model in an effective field theory framework.</p></div>\",\"PeriodicalId\":556,\"journal\":{\"name\":\"Few-Body Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00601-024-01948-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Few-Body Systems\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00601-024-01948-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01948-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Radiative Corrections and the Renormalization Group for the Two-Nucleon Interaction in Effective Field Theory
We use a combination of effective field theory and the renormalization group to determine the impact of radiative corrections on the nucleon–nucleon potential and the binding energy of the deuteron. In order to do so, we present a modified version of pionless effective field theory inspired by earlier work in nonrelativistic quantum electrodynamics. The renormalization group improvement of the deuteron binding energy leads to a shift on the order of a few percent and is consistent with the experimental value. This work serves as a starting point for a dedicated study of radiative corrections in few-body systems relevant for precision tests of the Standard Model in an effective field theory framework.
期刊介绍:
The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures.
Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal.
The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).