生物医学应用中的生物聚合物水凝胶:生物活性和伤口愈合特性

IF 20.3 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
{"title":"生物医学应用中的生物聚合物水凝胶:生物活性和伤口愈合特性","authors":"","doi":"10.1016/j.ccr.2024.216093","DOIUrl":null,"url":null,"abstract":"<div><p>Wound healing is a crucial but complex process that represents an onerous burden on both individuals and the healthcare system in the alarming growth of chronic diseases. Infection and inflammation as external factors may worsen the healing process, leading to severe tissue damage. Hence, embarking on state-of-the-art and green approaches to exalt wound healing is of utmost significance. Natural-origin polymers derived from renewable sources have a lower infection footprint for skin regeneration, good biological interpretation, enzyme-controlled degradability, and elevated chemical versatility. Herein, this review systematically details the in-depth information on utilizing biopolymers for wound dressing. We aim to emphasize the importance of functional groups of biopolymers in wound healing, which offer excellent antibacterial activity, and also highlight how desirable swelling ratio and tensile strength can enhance wound healing activity. While this review provides newcomers an invaluable insight into the development of biomaterials for futuristic applications, it also discusses the challenges posed by some factors like poor mechanical properties. We hope this study will purvey a panoramic sketch of biopolymer-based hydrogel to improve wound healing and concede that a more sustainable and greener future is on the way.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":null,"pages":null},"PeriodicalIF":20.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biopolymer-based hydrogels for biomedical applications: Bioactivity and wound healing properties\",\"authors\":\"\",\"doi\":\"10.1016/j.ccr.2024.216093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wound healing is a crucial but complex process that represents an onerous burden on both individuals and the healthcare system in the alarming growth of chronic diseases. Infection and inflammation as external factors may worsen the healing process, leading to severe tissue damage. Hence, embarking on state-of-the-art and green approaches to exalt wound healing is of utmost significance. Natural-origin polymers derived from renewable sources have a lower infection footprint for skin regeneration, good biological interpretation, enzyme-controlled degradability, and elevated chemical versatility. Herein, this review systematically details the in-depth information on utilizing biopolymers for wound dressing. We aim to emphasize the importance of functional groups of biopolymers in wound healing, which offer excellent antibacterial activity, and also highlight how desirable swelling ratio and tensile strength can enhance wound healing activity. While this review provides newcomers an invaluable insight into the development of biomaterials for futuristic applications, it also discusses the challenges posed by some factors like poor mechanical properties. We hope this study will purvey a panoramic sketch of biopolymer-based hydrogel to improve wound healing and concede that a more sustainable and greener future is on the way.</p></div>\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010854524004399\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524004399","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

伤口愈合是一个关键但复杂的过程,在慢性疾病惊人增长的情况下,它给个人和医疗系统都带来了沉重的负担。感染和炎症这些外部因素可能会恶化伤口愈合过程,导致严重的组织损伤。因此,采用最先进的绿色方法来促进伤口愈合至关重要。从可再生资源中提取的天然聚合物在皮肤再生方面具有较低的感染足迹、良好的生物解释性、酶控降解性和较高的化学多功能性。本综述系统地详细介绍了利用生物聚合物进行伤口敷料的深入信息。我们旨在强调生物聚合物的功能基团在伤口愈合中的重要性,这些功能基团具有出色的抗菌活性,同时还强调了理想的膨胀比和拉伸强度如何增强伤口愈合活性。这篇综述为新手提供了开发未来应用生物材料的宝贵见解,同时也讨论了机械性能差等因素带来的挑战。我们希望本研究能为改善伤口愈合提供一个基于生物聚合物的水凝胶的全景素描,并承认一个更可持续、更绿色的未来即将到来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biopolymer-based hydrogels for biomedical applications: Bioactivity and wound healing properties

Biopolymer-based hydrogels for biomedical applications: Bioactivity and wound healing properties

Wound healing is a crucial but complex process that represents an onerous burden on both individuals and the healthcare system in the alarming growth of chronic diseases. Infection and inflammation as external factors may worsen the healing process, leading to severe tissue damage. Hence, embarking on state-of-the-art and green approaches to exalt wound healing is of utmost significance. Natural-origin polymers derived from renewable sources have a lower infection footprint for skin regeneration, good biological interpretation, enzyme-controlled degradability, and elevated chemical versatility. Herein, this review systematically details the in-depth information on utilizing biopolymers for wound dressing. We aim to emphasize the importance of functional groups of biopolymers in wound healing, which offer excellent antibacterial activity, and also highlight how desirable swelling ratio and tensile strength can enhance wound healing activity. While this review provides newcomers an invaluable insight into the development of biomaterials for futuristic applications, it also discusses the challenges posed by some factors like poor mechanical properties. We hope this study will purvey a panoramic sketch of biopolymer-based hydrogel to improve wound healing and concede that a more sustainable and greener future is on the way.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coordination Chemistry Reviews
Coordination Chemistry Reviews 化学-无机化学与核化学
CiteScore
34.30
自引率
5.30%
发文量
457
审稿时长
54 days
期刊介绍: Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers. The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信