递推序列中方格数的界限

Pub Date : 2024-06-25 DOI:10.1016/j.jnt.2024.05.002
Paul M. Voutier
{"title":"递推序列中方格数的界限","authors":"Paul M. Voutier","doi":"10.1016/j.jnt.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the number of squares in a very broad family of binary recurrence sequences with <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>. We show that there are at most two distinct squares in such sequences (the best possible result), except under very special conditions where we prove there are at most three such squares.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds on the number of squares in recurrence sequences\",\"authors\":\"Paul M. Voutier\",\"doi\":\"10.1016/j.jnt.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the number of squares in a very broad family of binary recurrence sequences with <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>. We show that there are at most two distinct squares in such sequences (the best possible result), except under very special conditions where we prove there are at most three such squares.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个非常广泛的二元递推序列家族中的方格数,该序列的....我们证明在这些序列中最多有两个不同的正方形(这是最好的结果),除非在非常特殊的条件下,我们证明最多有三个这样的正方形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Bounds on the number of squares in recurrence sequences

We investigate the number of squares in a very broad family of binary recurrence sequences with u0=1. We show that there are at most two distinct squares in such sequences (the best possible result), except under very special conditions where we prove there are at most three such squares.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信