{"title":"Chern-kuiper 不等式","authors":"Diego Guajardo","doi":"10.1007/s10231-024-01492-6","DOIUrl":null,"url":null,"abstract":"<p>Given a Euclidean submanifold <span>\\(g:M^{n}\\rightarrow {\\mathbb {R}}^{n+p}\\)</span>, Chern and Kuiper provided inequalities between <span>\\(\\mu \\)</span> and <span>\\(\\nu _g\\)</span>, the ranks of the nullity of <span>\\(M^n\\)</span> and the relative nullity of <i>g</i> respectively. Namely, they prove that </p><span>$$\\begin{aligned} \\nu _g\\le \\mu \\le \\nu _g+p. \\end{aligned}$$</span>(1)<p>In this work, we study the submanifolds with <span>\\(\\nu _g\\ne \\mu \\)</span>. More precisely, we characterize locally the ones with <span>\\(0\\ne (\\mu -\\nu _g)\\in \\{p,p-1,p-2\\}\\)</span> under the hypothesis of <span>\\(\\nu _g\\le n-p-1\\)</span>.</p>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"16 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chern-kuiper’s inequalities\",\"authors\":\"Diego Guajardo\",\"doi\":\"10.1007/s10231-024-01492-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a Euclidean submanifold <span>\\\\(g:M^{n}\\\\rightarrow {\\\\mathbb {R}}^{n+p}\\\\)</span>, Chern and Kuiper provided inequalities between <span>\\\\(\\\\mu \\\\)</span> and <span>\\\\(\\\\nu _g\\\\)</span>, the ranks of the nullity of <span>\\\\(M^n\\\\)</span> and the relative nullity of <i>g</i> respectively. Namely, they prove that </p><span>$$\\\\begin{aligned} \\\\nu _g\\\\le \\\\mu \\\\le \\\\nu _g+p. \\\\end{aligned}$$</span>(1)<p>In this work, we study the submanifolds with <span>\\\\(\\\\nu _g\\\\ne \\\\mu \\\\)</span>. More precisely, we characterize locally the ones with <span>\\\\(0\\\\ne (\\\\mu -\\\\nu _g)\\\\in \\\\{p,p-1,p-2\\\\}\\\\)</span> under the hypothesis of <span>\\\\(\\\\nu _g\\\\le n-p-1\\\\)</span>.</p>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10231-024-01492-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10231-024-01492-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给定一个欧几里得子平面(g:M^{n}\rightarrow {mathbb {R}}^{n+p}\ ),Chern 和 Kuiper 提供了 \(\mu \) 和 \(\nu _g\)之间的不等式,它们分别是 \(M^n\) 的无效性等级和 g 的相对无效性等级。也就是说,他们证明了 $$\begin{aligned}\g+p.\end{aligned}$$(1)This work, we study the submanifolds with \(\nu _g\ne \mu \)。更准确地说,我们在\(\nu _g\le n-p-1\)的假设下局部地描述了那些具有\(0\ne (\mu -\nu _g)\in\{p,p-1,p-2\}\)的子曲面。
Given a Euclidean submanifold \(g:M^{n}\rightarrow {\mathbb {R}}^{n+p}\), Chern and Kuiper provided inequalities between \(\mu \) and \(\nu _g\), the ranks of the nullity of \(M^n\) and the relative nullity of g respectively. Namely, they prove that
In this work, we study the submanifolds with \(\nu _g\ne \mu \). More precisely, we characterize locally the ones with \(0\ne (\mu -\nu _g)\in \{p,p-1,p-2\}\) under the hypothesis of \(\nu _g\le n-p-1\).
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.