1,4-二羧酸在 Cu(110) 上的立体化学:军士与士兵、表面爆炸和手性重构

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL
{"title":"1,4-二羧酸在 Cu(110) 上的立体化学:军士与士兵、表面爆炸和手性重构","authors":"","doi":"10.1016/j.susc.2024.122569","DOIUrl":null,"url":null,"abstract":"<div><p>Dicarboxylic acids, including tartaric acid, have played a crucial role alongside amino acids in the study of chiral recognition on metal surfaces. Over the past two decades, significant insights into surface stereochemistry have emerged, particularly on Cu(110). This review examines various phenomena observed during the interaction of 1,4-dicarboxylic acids with the Cu(110) surface. We explore diverse aspects such as chiral surface reconstructions, intermolecular chiral recognition, stereoselective autocatalytic decomposition, and chiral symmetry breaking through doping.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001201/pdfft?md5=3afd3c5e7aafb532a72111869d65f114&pid=1-s2.0-S0039602824001201-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The stereochemistry of 1,4-dicarboxylic acids on Cu(110): Sergeants & soldiers, surface explosions and chiral reconstructions\",\"authors\":\"\",\"doi\":\"10.1016/j.susc.2024.122569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dicarboxylic acids, including tartaric acid, have played a crucial role alongside amino acids in the study of chiral recognition on metal surfaces. Over the past two decades, significant insights into surface stereochemistry have emerged, particularly on Cu(110). This review examines various phenomena observed during the interaction of 1,4-dicarboxylic acids with the Cu(110) surface. We explore diverse aspects such as chiral surface reconstructions, intermolecular chiral recognition, stereoselective autocatalytic decomposition, and chiral symmetry breaking through doping.</p></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0039602824001201/pdfft?md5=3afd3c5e7aafb532a72111869d65f114&pid=1-s2.0-S0039602824001201-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602824001201\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001201","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在金属表面手性识别的研究中,包括酒石酸在内的二羧酸与氨基酸一起发挥了至关重要的作用。在过去的二十年里,人们对表面立体化学有了更深入的了解,尤其是在铜(110)表面。本综述探讨了在 1,4-二羧酸与 Cu(110) 表面相互作用过程中观察到的各种现象。我们探讨了手性表面重构、分子间手性识别、立体选择性自催化分解以及通过掺杂打破手性对称等多个方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The stereochemistry of 1,4-dicarboxylic acids on Cu(110): Sergeants & soldiers, surface explosions and chiral reconstructions

The stereochemistry of 1,4-dicarboxylic acids on Cu(110): Sergeants & soldiers, surface explosions and chiral reconstructions

Dicarboxylic acids, including tartaric acid, have played a crucial role alongside amino acids in the study of chiral recognition on metal surfaces. Over the past two decades, significant insights into surface stereochemistry have emerged, particularly on Cu(110). This review examines various phenomena observed during the interaction of 1,4-dicarboxylic acids with the Cu(110) surface. We explore diverse aspects such as chiral surface reconstructions, intermolecular chiral recognition, stereoselective autocatalytic decomposition, and chiral symmetry breaking through doping.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Science
Surface Science 化学-物理:凝聚态物理
CiteScore
3.30
自引率
5.30%
发文量
137
审稿时长
25 days
期刊介绍: Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to: • model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions • nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena • reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization • phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization • surface reactivity for environmental protection and pollution remediation • interactions at surfaces of soft matter, including polymers and biomaterials. Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信