{"title":"用于金刚石生长的加氩脉冲模式等离子体光谱分析","authors":"","doi":"10.1016/j.diamond.2024.111475","DOIUrl":null,"url":null,"abstract":"<div><p>The advancement of high-speed growth technology for large-scale single-crystal diamonds is desired. In the widely used microwave plasma chemical vapor deposition method, the gas temperature in the plasma atmosphere significantly contributes to the generation of reactive radicals and enhancement of crystal growth. However, the impact of electron-dominated reactions in the plasma on the crystal growth remains unclear. In this study, we actively controlled the plasma environment by adding argon gas and adopting microwave pulse modulation to generate the plasma. We estimated the gas temperature and electron density of the plasma using optical emission spectroscopy. Our results implied that an increase in gas temperature alone hardly explained the enhancement of the growth rate by the argon addition or pulse modulation. In addition to the increase in the electron density due to the argon addition and pulse modulation, gas-phase chemical reaction calculations showed that the radical production enhancement became remarkable under an electron density higher than a threshold (10<sup>17</sup> m<sup>−3</sup>). Therefore, the enhancement of the growth rate mentioned above may be attributed to electron-dominated reactions in the discharge region. These findings suggest that increasing the electron density can further improve the growth rate and potentially enable diamond synthesis at lower temperatures than traditional methods.</p></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectroscopic analysis of pulsed-mode plasma with argon addition for diamond growth\",\"authors\":\"\",\"doi\":\"10.1016/j.diamond.2024.111475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The advancement of high-speed growth technology for large-scale single-crystal diamonds is desired. In the widely used microwave plasma chemical vapor deposition method, the gas temperature in the plasma atmosphere significantly contributes to the generation of reactive radicals and enhancement of crystal growth. However, the impact of electron-dominated reactions in the plasma on the crystal growth remains unclear. In this study, we actively controlled the plasma environment by adding argon gas and adopting microwave pulse modulation to generate the plasma. We estimated the gas temperature and electron density of the plasma using optical emission spectroscopy. Our results implied that an increase in gas temperature alone hardly explained the enhancement of the growth rate by the argon addition or pulse modulation. In addition to the increase in the electron density due to the argon addition and pulse modulation, gas-phase chemical reaction calculations showed that the radical production enhancement became remarkable under an electron density higher than a threshold (10<sup>17</sup> m<sup>−3</sup>). Therefore, the enhancement of the growth rate mentioned above may be attributed to electron-dominated reactions in the discharge region. These findings suggest that increasing the electron density can further improve the growth rate and potentially enable diamond synthesis at lower temperatures than traditional methods.</p></div>\",\"PeriodicalId\":11266,\"journal\":{\"name\":\"Diamond and Related Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diamond and Related Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925963524006885\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524006885","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Spectroscopic analysis of pulsed-mode plasma with argon addition for diamond growth
The advancement of high-speed growth technology for large-scale single-crystal diamonds is desired. In the widely used microwave plasma chemical vapor deposition method, the gas temperature in the plasma atmosphere significantly contributes to the generation of reactive radicals and enhancement of crystal growth. However, the impact of electron-dominated reactions in the plasma on the crystal growth remains unclear. In this study, we actively controlled the plasma environment by adding argon gas and adopting microwave pulse modulation to generate the plasma. We estimated the gas temperature and electron density of the plasma using optical emission spectroscopy. Our results implied that an increase in gas temperature alone hardly explained the enhancement of the growth rate by the argon addition or pulse modulation. In addition to the increase in the electron density due to the argon addition and pulse modulation, gas-phase chemical reaction calculations showed that the radical production enhancement became remarkable under an electron density higher than a threshold (1017 m−3). Therefore, the enhancement of the growth rate mentioned above may be attributed to electron-dominated reactions in the discharge region. These findings suggest that increasing the electron density can further improve the growth rate and potentially enable diamond synthesis at lower temperatures than traditional methods.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.