Abdallah Dayhoum, Alejandro Ramirez-Serrano, Robert Martinuzzi
{"title":"桨叶数量对开放式和笼罩式等实心转子性能的影响:实验分析","authors":"Abdallah Dayhoum, Alejandro Ramirez-Serrano, Robert Martinuzzi","doi":"10.3390/aerospace11080644","DOIUrl":null,"url":null,"abstract":"This study explores the implications of the number of blades on the performance of both open and shrouded rotors. By conducting a thorough experimental analysis at a fixed solidity ratio, this research seeks to enhance our understanding of rotor dynamics and efficiency. Two-, three-, four-, and five-bladed rotors were designed and manufactured to have the same solidity ratio. This leads to smaller chord distribution values for higher blade numbers. The experimental analysis aims to quantify the effects of the number of blades and provides a comparative analysis of performance differences between the two rotor configurations (shrouded and open). For the open rotor, results indicate that increasing the number of blades has a minimal impact on overall performance. This is due to the decrease in the tip loss factor being counterbalanced by a decline in efficiency caused by the two-dimensional airfoil performance, which results from a smaller chord and a lower Reynolds number. In contrast, the shrouded rotor exhibits a noticeable performance decay with an increased blade count. Since tip loss is inherently absent in shrouded designs, the decline is primarily attributed to the two-dimensional airfoil performance. This decay occurs while maintaining a constant solidity ratio, highlighting the significant effect of blade count on shrouded rotor efficiency, thereby contributing to the optimization of rotor design in various engineering applications.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Number of Blades’ Influence on the Performance of Rotor with Equal Solidity in Open and Shrouded Configurations: Experimental Analysis\",\"authors\":\"Abdallah Dayhoum, Alejandro Ramirez-Serrano, Robert Martinuzzi\",\"doi\":\"10.3390/aerospace11080644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the implications of the number of blades on the performance of both open and shrouded rotors. By conducting a thorough experimental analysis at a fixed solidity ratio, this research seeks to enhance our understanding of rotor dynamics and efficiency. Two-, three-, four-, and five-bladed rotors were designed and manufactured to have the same solidity ratio. This leads to smaller chord distribution values for higher blade numbers. The experimental analysis aims to quantify the effects of the number of blades and provides a comparative analysis of performance differences between the two rotor configurations (shrouded and open). For the open rotor, results indicate that increasing the number of blades has a minimal impact on overall performance. This is due to the decrease in the tip loss factor being counterbalanced by a decline in efficiency caused by the two-dimensional airfoil performance, which results from a smaller chord and a lower Reynolds number. In contrast, the shrouded rotor exhibits a noticeable performance decay with an increased blade count. Since tip loss is inherently absent in shrouded designs, the decline is primarily attributed to the two-dimensional airfoil performance. This decay occurs while maintaining a constant solidity ratio, highlighting the significant effect of blade count on shrouded rotor efficiency, thereby contributing to the optimization of rotor design in various engineering applications.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11080644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11080644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Number of Blades’ Influence on the Performance of Rotor with Equal Solidity in Open and Shrouded Configurations: Experimental Analysis
This study explores the implications of the number of blades on the performance of both open and shrouded rotors. By conducting a thorough experimental analysis at a fixed solidity ratio, this research seeks to enhance our understanding of rotor dynamics and efficiency. Two-, three-, four-, and five-bladed rotors were designed and manufactured to have the same solidity ratio. This leads to smaller chord distribution values for higher blade numbers. The experimental analysis aims to quantify the effects of the number of blades and provides a comparative analysis of performance differences between the two rotor configurations (shrouded and open). For the open rotor, results indicate that increasing the number of blades has a minimal impact on overall performance. This is due to the decrease in the tip loss factor being counterbalanced by a decline in efficiency caused by the two-dimensional airfoil performance, which results from a smaller chord and a lower Reynolds number. In contrast, the shrouded rotor exhibits a noticeable performance decay with an increased blade count. Since tip loss is inherently absent in shrouded designs, the decline is primarily attributed to the two-dimensional airfoil performance. This decay occurs while maintaining a constant solidity ratio, highlighting the significant effect of blade count on shrouded rotor efficiency, thereby contributing to the optimization of rotor design in various engineering applications.