{"title":"预制高钛重矿渣混凝土夹芯板墙抗震性能试验研究","authors":"Jinkun Sun, Rita Yi-man Li, Dagang Su, Housong Gong, Xiantao Zhang","doi":"10.3390/buildings14082450","DOIUrl":null,"url":null,"abstract":"Precast concrete (PC) shear wall members are essential components of the precast concrete shear wall structural system. Therefore, it is crucial to research their materials, and seismic performance is an important and vital indicator to promote the development of prefabricated buildings. This study introduced a new type of precast concrete sandwich shear wall, the precast high-titanium heavy slag concrete sandwich panel wall (PHCSPW), by replacing ordinary concrete coarse and fine aggregates with high-titanium heavy slag and adding insulation boards. This study constructed a cast-in-place high-titanium heavy slag concrete wall (CHCW) for comparative pseudo-static tests to validate its seismic performance. Finite element simulation analysis was conducted to compare and validate the reliability of the test. Considering the limitations of the test conditions, it also researched the seismic performance of PHCSPW by simulating different parameters such as reinforcement ratio, concrete strength, and axial compression ratio. It concludes the following: (1) The failure mode, stress-strain distribution, and ultimate bearing capacity values of PHCSPW and CHCW were consistent with theoretical and experimental analysis results. (2) PHCSPW exhibited high stiffness before cracking but experienced a rapid stiffness degradation rate after cracking. (3) The development trend of the PHCSPW and CHCW hysteresis curve is the same as the skeleton curve. There is little difference between the bearing capacity and deformation capacity after cracking. Comparing the hysteresis loops of CHCW and PHCSPW, it is found that PHCSPW has a larger hysteresis loop area, which indicates that PHCSPW has better energy dissipation capacity. The value of the yield load of the specimen compared with the peak load is between 0.636 and 0.888; that is, the difference inthe early-stage stiffness of the specimen is small. The yield load of PHCSPW is slightly larger than that of CHCW. The maximum carrying capacity of CHCW is about 68.31% of that of PHCSPW. (4) The simulation of different parameters revealed that the energy dissipation capacity of the members increased within a specific range with an increasing reinforcement ratio. PHCSPW demonstrated superior energy dissipation capacity. The influence of concrete strength on the energy dissipation capacity of the members was relatively small. The energy dissipation capacity of the members decreased with increasing axial compression ratio.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on Seismic Performance of Precast High-Titanium Heavy Slag Concrete Sandwich Panel Wall\",\"authors\":\"Jinkun Sun, Rita Yi-man Li, Dagang Su, Housong Gong, Xiantao Zhang\",\"doi\":\"10.3390/buildings14082450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precast concrete (PC) shear wall members are essential components of the precast concrete shear wall structural system. Therefore, it is crucial to research their materials, and seismic performance is an important and vital indicator to promote the development of prefabricated buildings. This study introduced a new type of precast concrete sandwich shear wall, the precast high-titanium heavy slag concrete sandwich panel wall (PHCSPW), by replacing ordinary concrete coarse and fine aggregates with high-titanium heavy slag and adding insulation boards. This study constructed a cast-in-place high-titanium heavy slag concrete wall (CHCW) for comparative pseudo-static tests to validate its seismic performance. Finite element simulation analysis was conducted to compare and validate the reliability of the test. Considering the limitations of the test conditions, it also researched the seismic performance of PHCSPW by simulating different parameters such as reinforcement ratio, concrete strength, and axial compression ratio. It concludes the following: (1) The failure mode, stress-strain distribution, and ultimate bearing capacity values of PHCSPW and CHCW were consistent with theoretical and experimental analysis results. (2) PHCSPW exhibited high stiffness before cracking but experienced a rapid stiffness degradation rate after cracking. (3) The development trend of the PHCSPW and CHCW hysteresis curve is the same as the skeleton curve. There is little difference between the bearing capacity and deformation capacity after cracking. Comparing the hysteresis loops of CHCW and PHCSPW, it is found that PHCSPW has a larger hysteresis loop area, which indicates that PHCSPW has better energy dissipation capacity. The value of the yield load of the specimen compared with the peak load is between 0.636 and 0.888; that is, the difference inthe early-stage stiffness of the specimen is small. The yield load of PHCSPW is slightly larger than that of CHCW. The maximum carrying capacity of CHCW is about 68.31% of that of PHCSPW. (4) The simulation of different parameters revealed that the energy dissipation capacity of the members increased within a specific range with an increasing reinforcement ratio. PHCSPW demonstrated superior energy dissipation capacity. The influence of concrete strength on the energy dissipation capacity of the members was relatively small. The energy dissipation capacity of the members decreased with increasing axial compression ratio.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14082450\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082450","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Experimental Study on Seismic Performance of Precast High-Titanium Heavy Slag Concrete Sandwich Panel Wall
Precast concrete (PC) shear wall members are essential components of the precast concrete shear wall structural system. Therefore, it is crucial to research their materials, and seismic performance is an important and vital indicator to promote the development of prefabricated buildings. This study introduced a new type of precast concrete sandwich shear wall, the precast high-titanium heavy slag concrete sandwich panel wall (PHCSPW), by replacing ordinary concrete coarse and fine aggregates with high-titanium heavy slag and adding insulation boards. This study constructed a cast-in-place high-titanium heavy slag concrete wall (CHCW) for comparative pseudo-static tests to validate its seismic performance. Finite element simulation analysis was conducted to compare and validate the reliability of the test. Considering the limitations of the test conditions, it also researched the seismic performance of PHCSPW by simulating different parameters such as reinforcement ratio, concrete strength, and axial compression ratio. It concludes the following: (1) The failure mode, stress-strain distribution, and ultimate bearing capacity values of PHCSPW and CHCW were consistent with theoretical and experimental analysis results. (2) PHCSPW exhibited high stiffness before cracking but experienced a rapid stiffness degradation rate after cracking. (3) The development trend of the PHCSPW and CHCW hysteresis curve is the same as the skeleton curve. There is little difference between the bearing capacity and deformation capacity after cracking. Comparing the hysteresis loops of CHCW and PHCSPW, it is found that PHCSPW has a larger hysteresis loop area, which indicates that PHCSPW has better energy dissipation capacity. The value of the yield load of the specimen compared with the peak load is between 0.636 and 0.888; that is, the difference inthe early-stage stiffness of the specimen is small. The yield load of PHCSPW is slightly larger than that of CHCW. The maximum carrying capacity of CHCW is about 68.31% of that of PHCSPW. (4) The simulation of different parameters revealed that the energy dissipation capacity of the members increased within a specific range with an increasing reinforcement ratio. PHCSPW demonstrated superior energy dissipation capacity. The influence of concrete strength on the energy dissipation capacity of the members was relatively small. The energy dissipation capacity of the members decreased with increasing axial compression ratio.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates