既有建筑可持续翻新的演变:从综合抗震和环境改造战略到生命周期思维方法

IF 3.8 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Chiara Passoni, Martina Caruso, Licia Felicioni, Paolo Negro
{"title":"既有建筑可持续翻新的演变:从综合抗震和环境改造战略到生命周期思维方法","authors":"Chiara Passoni,&nbsp;Martina Caruso,&nbsp;Licia Felicioni,&nbsp;Paolo Negro","doi":"10.1007/s10518-024-01991-0","DOIUrl":null,"url":null,"abstract":"<div><p>The sustainable renovation of existing buildings is currently at the top of the agenda of the European Union. Sustainability is typically defined as the result of the interaction of environmental, economic, and social aspects, and it is now considered a major target objective in all sectors of our economy, including the construction one. The concept of sustainable renovation has changed significantly over time, leading to the current interpretation that considers the need to simultaneously improve safety and resilience against natural hazards and minimise energy and resource consumption, as well as to reduce impacts along the life cycle of the building. This manuscript presents insights into combined/integrated environmental and seismic retrofitting techniques and assessment methods for the sustainable renovation of the existing building stock, specifically focussing on those conceived according to a Life Cycle Thinking (LCT) approach. This manuscript goes beyond the current available state of the art by highlighting the evolution of the concept of building sustainability throughout time, as well as defining a comprehensive taxonomy of available retrofitting strategies, while also identifying common clusters among available research papers. This research effort is part of the mission of the European Association of Earthquake Engineering (EAEE) Working Group 15 (WG15), which focusses on ‘combined seismic and environmental upgrading of existing buildings”.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 13","pages":"6327 - 6357"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-01991-0.pdf","citationCount":"0","resultStr":"{\"title\":\"The evolution of sustainable renovation of existing buildings: from integrated seismic and environmental retrofitting strategies to a life cycle thinking approach\",\"authors\":\"Chiara Passoni,&nbsp;Martina Caruso,&nbsp;Licia Felicioni,&nbsp;Paolo Negro\",\"doi\":\"10.1007/s10518-024-01991-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sustainable renovation of existing buildings is currently at the top of the agenda of the European Union. Sustainability is typically defined as the result of the interaction of environmental, economic, and social aspects, and it is now considered a major target objective in all sectors of our economy, including the construction one. The concept of sustainable renovation has changed significantly over time, leading to the current interpretation that considers the need to simultaneously improve safety and resilience against natural hazards and minimise energy and resource consumption, as well as to reduce impacts along the life cycle of the building. This manuscript presents insights into combined/integrated environmental and seismic retrofitting techniques and assessment methods for the sustainable renovation of the existing building stock, specifically focussing on those conceived according to a Life Cycle Thinking (LCT) approach. This manuscript goes beyond the current available state of the art by highlighting the evolution of the concept of building sustainability throughout time, as well as defining a comprehensive taxonomy of available retrofitting strategies, while also identifying common clusters among available research papers. This research effort is part of the mission of the European Association of Earthquake Engineering (EAEE) Working Group 15 (WG15), which focusses on ‘combined seismic and environmental upgrading of existing buildings”.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"22 13\",\"pages\":\"6327 - 6357\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10518-024-01991-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-01991-0\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-01991-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

对现有建筑进行可持续翻新是欧盟目前的首要议程。可持续发展通常被定义为环境、经济和社会各方面相互作用的结果,目前已被视为包括建筑业在内的所有经济部门的主要目标。随着时间的推移,可持续翻新的概念已经发生了很大变化,目前的解释是需要同时提高安全性和抵御自然灾害的能力,最大限度地减少能源和资源消耗,以及减少建筑物生命周期内的影响。本手稿深入探讨了环境和抗震改造的组合/集成技术,以及对现有建筑进行可持续翻新的评估方法,特别侧重于根据生命周期思维(LCT)方法构思的技术和方法。本手稿超越了目前现有的技术水平,强调了建筑可持续性概念在不同时期的演变,并对现有改造策略进行了全面分类,同时还确定了现有研究论文中的共同集群。这项研究工作是欧洲地震工程协会(EAEE)第 15 工作组(WG15)任务的一部分,该工作组的重点是 "现有建筑的抗震和环境综合改造"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The evolution of sustainable renovation of existing buildings: from integrated seismic and environmental retrofitting strategies to a life cycle thinking approach

The evolution of sustainable renovation of existing buildings: from integrated seismic and environmental retrofitting strategies to a life cycle thinking approach

The sustainable renovation of existing buildings is currently at the top of the agenda of the European Union. Sustainability is typically defined as the result of the interaction of environmental, economic, and social aspects, and it is now considered a major target objective in all sectors of our economy, including the construction one. The concept of sustainable renovation has changed significantly over time, leading to the current interpretation that considers the need to simultaneously improve safety and resilience against natural hazards and minimise energy and resource consumption, as well as to reduce impacts along the life cycle of the building. This manuscript presents insights into combined/integrated environmental and seismic retrofitting techniques and assessment methods for the sustainable renovation of the existing building stock, specifically focussing on those conceived according to a Life Cycle Thinking (LCT) approach. This manuscript goes beyond the current available state of the art by highlighting the evolution of the concept of building sustainability throughout time, as well as defining a comprehensive taxonomy of available retrofitting strategies, while also identifying common clusters among available research papers. This research effort is part of the mission of the European Association of Earthquake Engineering (EAEE) Working Group 15 (WG15), which focusses on ‘combined seismic and environmental upgrading of existing buildings”.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Earthquake Engineering
Bulletin of Earthquake Engineering 工程技术-地球科学综合
CiteScore
8.90
自引率
19.60%
发文量
263
审稿时长
7.5 months
期刊介绍: Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings. Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more. This is the Official Publication of the European Association for Earthquake Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信