{"title":"用于安全关键型系统的高性能和可预测共享末级高速缓存","authors":"Zhuanhao Wu, A. Kaushik, Hiren D. Patel","doi":"10.1145/3687308","DOIUrl":null,"url":null,"abstract":"We propose ZeroCost-LLC (ZCLLC), a novel shared inclusive last-level cache (LLC) design for timing predictable multi-core platforms that offers lower worst-case latency (WCL) when compared to a traditional shared inclusive LLC design. ZCLLC achieves low WCL by eliminating certain memory operations in the form of cache line invalidations across the cache hierarchy that are a consequence of a core’s memory request that misses in the cache hierarchy and when there is no vacant entry in the LLC to accommodate the fetched data for this request. In addition to low WCL, ZCLLC offers performance benefits in the form of additional caching capacity and unlike state-of-the-art approaches, ZCLLC does not impose any constraints on its usage across multiple cores. In this work, we describe the impact of LLC cache line invalidations on the WCL and systematically build solutions to eliminate these invalidations resulting in ZCLLC. We also present ZCLLC, an optimized variant of ZCLLC that offers lower WCL and improved average-case performance over ZCLLC. We apply optimizations to the shared bus arbitration mechanism and extend the micro-architecture of ZCLLC to allow for overlapping memory requests to the main memory. Our analysis reveals that the analytical WCL of a memory request under ZCLLC is 87.0%, 93.8%, and 97.1% lower than that under state-of-the-art LLC partition sharing techniques for 2, 4, and 8 cores, respectively. ZCLLC shows average-case performance speedups of 1.89 ×, 3.36 ×, and 6.24 × compared to the state-of-the-art LLC partition sharing techniques for 2, 4, and 8 cores, respectively. When compared to the original ZCLLC that does not have any optimizations, ZCLLC shows lower analytical WCLs that are 76.5%, 82.6%, and 86.2% lower compared to ZCLLC-NORMAL for 2, 4, and 8 cores, respectively.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 5","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Performance and Predictable Shared Last-level Cache for Safety-Critical Systems\",\"authors\":\"Zhuanhao Wu, A. Kaushik, Hiren D. Patel\",\"doi\":\"10.1145/3687308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose ZeroCost-LLC (ZCLLC), a novel shared inclusive last-level cache (LLC) design for timing predictable multi-core platforms that offers lower worst-case latency (WCL) when compared to a traditional shared inclusive LLC design. ZCLLC achieves low WCL by eliminating certain memory operations in the form of cache line invalidations across the cache hierarchy that are a consequence of a core’s memory request that misses in the cache hierarchy and when there is no vacant entry in the LLC to accommodate the fetched data for this request. In addition to low WCL, ZCLLC offers performance benefits in the form of additional caching capacity and unlike state-of-the-art approaches, ZCLLC does not impose any constraints on its usage across multiple cores. In this work, we describe the impact of LLC cache line invalidations on the WCL and systematically build solutions to eliminate these invalidations resulting in ZCLLC. We also present ZCLLC, an optimized variant of ZCLLC that offers lower WCL and improved average-case performance over ZCLLC. We apply optimizations to the shared bus arbitration mechanism and extend the micro-architecture of ZCLLC to allow for overlapping memory requests to the main memory. Our analysis reveals that the analytical WCL of a memory request under ZCLLC is 87.0%, 93.8%, and 97.1% lower than that under state-of-the-art LLC partition sharing techniques for 2, 4, and 8 cores, respectively. ZCLLC shows average-case performance speedups of 1.89 ×, 3.36 ×, and 6.24 × compared to the state-of-the-art LLC partition sharing techniques for 2, 4, and 8 cores, respectively. When compared to the original ZCLLC that does not have any optimizations, ZCLLC shows lower analytical WCLs that are 76.5%, 82.6%, and 86.2% lower compared to ZCLLC-NORMAL for 2, 4, and 8 cores, respectively.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"8 5\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3687308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
High Performance and Predictable Shared Last-level Cache for Safety-Critical Systems
We propose ZeroCost-LLC (ZCLLC), a novel shared inclusive last-level cache (LLC) design for timing predictable multi-core platforms that offers lower worst-case latency (WCL) when compared to a traditional shared inclusive LLC design. ZCLLC achieves low WCL by eliminating certain memory operations in the form of cache line invalidations across the cache hierarchy that are a consequence of a core’s memory request that misses in the cache hierarchy and when there is no vacant entry in the LLC to accommodate the fetched data for this request. In addition to low WCL, ZCLLC offers performance benefits in the form of additional caching capacity and unlike state-of-the-art approaches, ZCLLC does not impose any constraints on its usage across multiple cores. In this work, we describe the impact of LLC cache line invalidations on the WCL and systematically build solutions to eliminate these invalidations resulting in ZCLLC. We also present ZCLLC, an optimized variant of ZCLLC that offers lower WCL and improved average-case performance over ZCLLC. We apply optimizations to the shared bus arbitration mechanism and extend the micro-architecture of ZCLLC to allow for overlapping memory requests to the main memory. Our analysis reveals that the analytical WCL of a memory request under ZCLLC is 87.0%, 93.8%, and 97.1% lower than that under state-of-the-art LLC partition sharing techniques for 2, 4, and 8 cores, respectively. ZCLLC shows average-case performance speedups of 1.89 ×, 3.36 ×, and 6.24 × compared to the state-of-the-art LLC partition sharing techniques for 2, 4, and 8 cores, respectively. When compared to the original ZCLLC that does not have any optimizations, ZCLLC shows lower analytical WCLs that are 76.5%, 82.6%, and 86.2% lower compared to ZCLLC-NORMAL for 2, 4, and 8 cores, respectively.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.