Xiping Ma, Wenxi Zhen, Rui Xu, Xiaoyang Dong, Yaxin Li
{"title":"考虑无功功率的风电集群双级无功功率优化,同时整合电网","authors":"Xiping Ma, Wenxi Zhen, Rui Xu, Xiaoyang Dong, Yaxin Li","doi":"10.3390/en17163910","DOIUrl":null,"url":null,"abstract":"With the integration of large-scale wind power clusters into the power system, wind farms play a crucial role in grid reactive power regulation. However, the range of its reactive power remains uncertain, posing challenges in formulating a viable program for regulating reactive power to ensure the safe and cost-effective operation of the power system. Based on this, this paper develops a bi-level reactive power optimization for wind clusters integrating the power grid while considering the reactive capability. Firstly, this paper carries out a refined analysis of the wind power clusters, taking into account the characteristics of different areas to estimate the exact value of the reactive power capability in wind power clusters. Secondly, a bi-level reactive power optimization model is established. The upper-layer optimization aims to minimize active losses and voltage deviation in power system operation, while the lower-layer optimization focuses on maximizing reactive power margin utilization in wind farms. To solve this bi-level optimization model, an improved artificial fish swarm algorithm (AFSA) is employed, which decouples real variables and integer variables to enhance the optimization ability of the algorithm. Finally, the effectiveness of our proposed optimization strategy and algorithm is validated through the simulation results.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"49 19","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bi-Level Reactive Power Optimization for Wind Clusters Integrating the Power Grid While Considering the Reactive Capability\",\"authors\":\"Xiping Ma, Wenxi Zhen, Rui Xu, Xiaoyang Dong, Yaxin Li\",\"doi\":\"10.3390/en17163910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the integration of large-scale wind power clusters into the power system, wind farms play a crucial role in grid reactive power regulation. However, the range of its reactive power remains uncertain, posing challenges in formulating a viable program for regulating reactive power to ensure the safe and cost-effective operation of the power system. Based on this, this paper develops a bi-level reactive power optimization for wind clusters integrating the power grid while considering the reactive capability. Firstly, this paper carries out a refined analysis of the wind power clusters, taking into account the characteristics of different areas to estimate the exact value of the reactive power capability in wind power clusters. Secondly, a bi-level reactive power optimization model is established. The upper-layer optimization aims to minimize active losses and voltage deviation in power system operation, while the lower-layer optimization focuses on maximizing reactive power margin utilization in wind farms. To solve this bi-level optimization model, an improved artificial fish swarm algorithm (AFSA) is employed, which decouples real variables and integer variables to enhance the optimization ability of the algorithm. Finally, the effectiveness of our proposed optimization strategy and algorithm is validated through the simulation results.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"49 19\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17163910\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17163910","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Bi-Level Reactive Power Optimization for Wind Clusters Integrating the Power Grid While Considering the Reactive Capability
With the integration of large-scale wind power clusters into the power system, wind farms play a crucial role in grid reactive power regulation. However, the range of its reactive power remains uncertain, posing challenges in formulating a viable program for regulating reactive power to ensure the safe and cost-effective operation of the power system. Based on this, this paper develops a bi-level reactive power optimization for wind clusters integrating the power grid while considering the reactive capability. Firstly, this paper carries out a refined analysis of the wind power clusters, taking into account the characteristics of different areas to estimate the exact value of the reactive power capability in wind power clusters. Secondly, a bi-level reactive power optimization model is established. The upper-layer optimization aims to minimize active losses and voltage deviation in power system operation, while the lower-layer optimization focuses on maximizing reactive power margin utilization in wind farms. To solve this bi-level optimization model, an improved artificial fish swarm algorithm (AFSA) is employed, which decouples real variables and integer variables to enhance the optimization ability of the algorithm. Finally, the effectiveness of our proposed optimization strategy and algorithm is validated through the simulation results.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico